MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg2 Structured version   Visualization version   GIF version

Theorem frgrwopreg2 27498
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreg2 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵   𝑣,𝐴,𝑤   𝑣,𝐵,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤,𝑥   𝑤,𝑉,𝑣
Allowed substitution hints:   𝐷(𝑤,𝑣)   𝐸(𝑥,𝑤)   𝐾(𝑤,𝑣)

Proof of Theorem frgrwopreg2
StepHypRef Expression
1 frgrwopreg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . . . 6 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . . . 6 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . . . 6 𝐵 = (𝑉𝐴)
51, 2, 3, 4frgrwopreglem1 27491 . . . . 5 (𝐴 ∈ V ∧ 𝐵 ∈ V)
65simpri 473 . . . 4 𝐵 ∈ V
7 hash1snb 13408 . . . 4 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣}))
86, 7ax-mp 5 . . 3 ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣})
9 exsnrex 4357 . . . . 5 (∃𝑣 𝐵 = {𝑣} ↔ ∃𝑣𝐵 𝐵 = {𝑣})
10 difss 3886 . . . . . . . 8 (𝑉𝐴) ⊆ 𝑉
114, 10eqsstri 3782 . . . . . . 7 𝐵𝑉
12 ssrexv 3814 . . . . . . 7 (𝐵𝑉 → (∃𝑣𝐵 𝐵 = {𝑣} → ∃𝑣𝑉 𝐵 = {𝑣}))
1311, 12ax-mp 5 . . . . . 6 (∃𝑣𝐵 𝐵 = {𝑣} → ∃𝑣𝑉 𝐵 = {𝑣})
14 frgrwopreg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
151, 2, 3, 4, 14frgrwopregbsn 27496 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉𝐵 = {𝑣}) → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
16153expia 1113 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (𝐵 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1716reximdva 3164 . . . . . 6 (𝐺 ∈ FriendGraph → (∃𝑣𝑉 𝐵 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1813, 17syl5com 31 . . . . 5 (∃𝑣𝐵 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
199, 18sylbi 207 . . . 4 (∃𝑣 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2019com12 32 . . 3 (𝐺 ∈ FriendGraph → (∃𝑣 𝐵 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
218, 20syl5bi 232 . 2 (𝐺 ∈ FriendGraph → ((♯‘𝐵) = 1 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2221imp 393 1 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wex 1851  wcel 2144  wral 3060  wrex 3061  {crab 3064  Vcvv 3349  cdif 3718  wss 3721  {csn 4314  {cpr 4316  cfv 6031  1c1 10138  chash 13320  Vtxcvtx 26094  Edgcedg 26159  VtxDegcvtxdg 26595   FriendGraph cfrgr 27435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-xadd 12151  df-fz 12533  df-hash 13321  df-edg 26160  df-uhgr 26173  df-ushgr 26174  df-upgr 26197  df-umgr 26198  df-uspgr 26266  df-usgr 26267  df-nbgr 26447  df-vtxdg 26596  df-frgr 27436
This theorem is referenced by:  frgrregorufr0  27503
  Copyright terms: Public domain W3C validator