MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg1 Structured version   Visualization version   GIF version

Theorem frgrwopreg1 27298
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreg1 ((𝐺 ∈ FriendGraph ∧ (#‘𝐴) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵   𝑣,𝐴,𝑤   𝑣,𝐵,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤,𝑥   𝑤,𝑉,𝑣
Allowed substitution hints:   𝐷(𝑤,𝑣)   𝐸(𝑥,𝑤)   𝐾(𝑤,𝑣)

Proof of Theorem frgrwopreg1
StepHypRef Expression
1 frgrwopreg.a . . . . 5 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
2 frgrwopreg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32fvexi 6240 . . . . 5 𝑉 ∈ V
41, 3rabex2 4847 . . . 4 𝐴 ∈ V
5 hash1snb 13245 . . . 4 (𝐴 ∈ V → ((#‘𝐴) = 1 ↔ ∃𝑣 𝐴 = {𝑣}))
64, 5ax-mp 5 . . 3 ((#‘𝐴) = 1 ↔ ∃𝑣 𝐴 = {𝑣})
7 exsnrex 4253 . . . . 5 (∃𝑣 𝐴 = {𝑣} ↔ ∃𝑣𝐴 𝐴 = {𝑣})
81ssrab3 3721 . . . . . . 7 𝐴𝑉
9 ssrexv 3700 . . . . . . 7 (𝐴𝑉 → (∃𝑣𝐴 𝐴 = {𝑣} → ∃𝑣𝑉 𝐴 = {𝑣}))
108, 9ax-mp 5 . . . . . 6 (∃𝑣𝐴 𝐴 = {𝑣} → ∃𝑣𝑉 𝐴 = {𝑣})
11 frgrwopreg.d . . . . . . . . 9 𝐷 = (VtxDeg‘𝐺)
12 frgrwopreg.b . . . . . . . . 9 𝐵 = (𝑉𝐴)
13 frgrwopreg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
142, 11, 1, 12, 13frgrwopregasn 27296 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉𝐴 = {𝑣}) → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
15143expia 1286 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (𝐴 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1615reximdva 3046 . . . . . 6 (𝐺 ∈ FriendGraph → (∃𝑣𝑉 𝐴 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1710, 16syl5com 31 . . . . 5 (∃𝑣𝐴 𝐴 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
187, 17sylbi 207 . . . 4 (∃𝑣 𝐴 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1918com12 32 . . 3 (𝐺 ∈ FriendGraph → (∃𝑣 𝐴 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
206, 19syl5bi 232 . 2 (𝐺 ∈ FriendGraph → ((#‘𝐴) = 1 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2120imp 444 1 ((𝐺 ∈ FriendGraph ∧ (#‘𝐴) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  wss 3607  {csn 4210  {cpr 4212  cfv 5926  1c1 9975  #chash 13157  Vtxcvtx 25919  Edgcedg 25984  VtxDegcvtxdg 26417   FriendGraph cfrgr 27236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-xadd 11985  df-fz 12365  df-hash 13158  df-edg 25985  df-uhgr 25998  df-ushgr 25999  df-upgr 26022  df-umgr 26023  df-uspgr 26090  df-usgr 26091  df-nbgr 26270  df-vtxdg 26418  df-frgr 27237
This theorem is referenced by:  frgrregorufr0  27304
  Copyright terms: Public domain W3C validator