![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrusgr | Structured version Visualization version GIF version |
Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frgrusgr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2651 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | frgrusgrfrcond 27239 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
4 | 3 | simplbi 475 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∀wral 2941 ∃!wreu 2943 ∖ cdif 3604 ⊆ wss 3607 {csn 4210 {cpr 4212 ‘cfv 5926 Vtxcvtx 25919 Edgcedg 25984 USGraphcusgr 26089 FriendGraph cfrgr 27236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-frgr 27237 |
This theorem is referenced by: frgreu 27248 frcond3 27249 nfrgr2v 27252 3vfriswmgr 27258 2pthfrgrrn2 27263 2pthfrgr 27264 3cyclfrgrrn2 27267 3cyclfrgr 27268 n4cyclfrgr 27271 frgrnbnb 27273 vdgn0frgrv2 27275 vdgn1frgrv2 27276 frgrncvvdeqlem2 27280 frgrncvvdeqlem3 27281 frgrncvvdeqlem6 27284 frgrncvvdeqlem9 27287 frgrncvvdeq 27289 frgrwopreglem4a 27290 frgrwopreg 27303 frgrregorufrg 27306 frgr2wwlkeu 27307 frgr2wsp1 27310 frgr2wwlkeqm 27311 frrusgrord0lem 27319 frrusgrord0 27320 friendshipgt3 27385 |
Copyright terms: Public domain | W3C validator |