Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregord13 Structured version   Visualization version   GIF version

Theorem frgrregord13 27595
 Description: If a nonempty finite friendship graph is 𝐾-regular, then it must have order 1 or 3. Special case of frgrregord013 27594. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrregord13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))

Proof of Theorem frgrregord13
StepHypRef Expression
1 simpl1 1227 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → 𝐺 ∈ FriendGraph )
2 simpl2 1229 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → 𝑉 ∈ Fin)
3 simpr 471 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → 𝐺RegUSGraph𝐾)
4 frgrreggt1.v . . . 4 𝑉 = (Vtx‘𝐺)
54frgrregord013 27594 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
61, 2, 3, 5syl3anc 1476 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
7 hasheq0 13356 . . . . . . . . 9 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
8 eqneqall 2954 . . . . . . . . 9 (𝑉 = ∅ → (𝑉 ≠ ∅ → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
97, 8syl6bi 243 . . . . . . . 8 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 → (𝑉 ≠ ∅ → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
109com23 86 . . . . . . 7 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
1110a1i 11 . . . . . 6 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
12113imp 1101 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1312adantr 466 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1413com12 32 . . 3 ((♯‘𝑉) = 0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
15 orc 856 . . . 4 ((♯‘𝑉) = 1 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
1615a1d 25 . . 3 ((♯‘𝑉) = 1 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
17 olc 857 . . . 4 ((♯‘𝑉) = 3 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
1817a1d 25 . . 3 ((♯‘𝑉) = 3 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1914, 16, 183jaoi 1539 . 2 (((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
206, 19mpcom 38 1 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∨ wo 836   ∨ w3o 1070   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∅c0 4063   class class class wbr 4786  ‘cfv 6031  Fincfn 8109  0cc0 10138  1c1 10139  3c3 11273  ♯chash 13321  Vtxcvtx 26095  RegUSGraphcrusgr 26687   FriendGraph cfrgr 27438 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-ac2 9487  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-ifp 1050  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-ac 9139  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-rp 12036  df-xadd 12152  df-ico 12386  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13495  df-lsw 13496  df-concat 13497  df-s1 13498  df-substr 13499  df-reps 13502  df-csh 13744  df-s2 13802  df-s3 13803  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-dvds 15190  df-gcd 15425  df-prm 15593  df-phi 15678  df-vtx 26097  df-iedg 26098  df-edg 26161  df-uhgr 26174  df-ushgr 26175  df-upgr 26198  df-umgr 26199  df-uspgr 26267  df-usgr 26268  df-fusgr 26432  df-nbgr 26448  df-vtxdg 26597  df-rgr 26688  df-rusgr 26689  df-wlks 26730  df-wlkson 26731  df-trls 26824  df-trlson 26825  df-pths 26847  df-spths 26848  df-pthson 26849  df-spthson 26850  df-wwlks 26958  df-wwlksn 26959  df-wwlksnon 26960  df-wspthsn 26961  df-wspthsnon 26962  df-clwwlk 27132  df-clwwlkn 27176  df-clwwlknon 27260  df-conngr 27367  df-frgr 27439 This theorem is referenced by:  frgrogt3nreg  27596
 Copyright terms: Public domain W3C validator