MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreggt1 Structured version   Visualization version   GIF version

Theorem frgrreggt1 27380
Description: If a finite nonempty friendship graph is 𝐾-regular with 𝐾 > 1, then 𝐾 must be 2. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreggt1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺RegUSGraph𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))

Proof of Theorem frgrreggt1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp1 1081 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ FriendGraph )
21anim1i 591 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾))
32ancomd 466 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ))
4 simp3 1083 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
5 simp2 1082 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
64, 5jca 553 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
76adantr 480 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
8 frgrreggt1.v . . . . 5 𝑉 = (Vtx‘𝐺)
98numclwwlk7lem 27376 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
103, 7, 9syl2anc 694 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → 𝐾 ∈ ℕ0)
11 2z 11447 . . . . . . . . . 10 2 ∈ ℤ
1211a1i 11 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ∈ ℤ)
13 nn0z 11438 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
1413adantr 480 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 𝐾 ∈ ℤ)
15 peano2zm 11458 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
1614, 15syl 17 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ ℤ)
17 zltlem1 11468 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1811, 13, 17sylancr 696 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1918biimpa 500 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ≤ (𝐾 − 1))
20 eluz2 11731 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ ∧ 2 ≤ (𝐾 − 1)))
2112, 16, 19, 20syl3anbrc 1265 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ (ℤ‘2))
22 exprmfct 15463 . . . . . . . 8 ((𝐾 − 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
2321, 22syl 17 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
245anim1i 591 . . . . . . . . . . . . . . 15 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾))
2524ancomd 466 . . . . . . . . . . . . . 14 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (𝐺RegUSGraph𝐾𝑉 ∈ Fin))
268finrusgrfusgr 26517 . . . . . . . . . . . . . 14 ((𝐺RegUSGraph𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
2725, 26syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → 𝐺 ∈ FinUSGraph)
28273ad2ant3 1104 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾)) → 𝐺 ∈ FinUSGraph)
29 simp1l 1105 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾)) → 𝑝 ∈ ℙ)
30 numclwwlk8 27379 . . . . . . . . . . . 12 ((𝐺 ∈ FinUSGraph ∧ 𝑝 ∈ ℙ) → ((#‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
3128, 29, 30syl2anc 694 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾)) → ((#‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
3233ad2ant3 1104 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾)) → (𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ))
33 pm3.22 464 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
34333adant1 1099 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
3534adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
36353ad2ant3 1104 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾)) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
37 simp1 1081 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾)) → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)))
388numclwwlk7 27378 . . . . . . . . . . . 12 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1))) → ((#‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
3932, 36, 37, 38syl3anc 1366 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾)) → ((#‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
40 eqeq1 2655 . . . . . . . . . . . 12 (((#‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((#‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 ↔ 0 = 1))
41 ax-1ne0 10043 . . . . . . . . . . . . . 14 1 ≠ 0
4241nesymi 2880 . . . . . . . . . . . . 13 ¬ 0 = 1
4342pm2.21i 116 . . . . . . . . . . . 12 (0 = 1 → 𝐾 = 2)
4440, 43syl6bi 243 . . . . . . . . . . 11 (((#‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((#‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 → 𝐾 = 2))
4531, 39, 44sylc 65 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾)) → 𝐾 = 2)
4645a1d 25 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾)) → (1 < 𝐾𝐾 = 2))
47463exp 1283 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (1 < 𝐾𝐾 = 2))))
4847rexlimiva 3057 . . . . . . 7 (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (1 < 𝐾𝐾 = 2))))
4923, 48mpcom 38 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (1 < 𝐾𝐾 = 2)))
5049expcom 450 . . . . 5 (2 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (1 < 𝐾𝐾 = 2))))
5150com23 86 . . . 4 (2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
52 1red 10093 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 1 ∈ ℝ)
53 nn0re 11339 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5452, 53ltnled 10222 . . . . . . . 8 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 ≤ 1))
55 1e2m1 11174 . . . . . . . . . . 11 1 = (2 − 1)
5655a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 1 = (2 − 1))
5756breq2d 4697 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ 𝐾 ≤ (2 − 1)))
5857notbid 307 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ 1 ↔ ¬ 𝐾 ≤ (2 − 1)))
59 zltlem1 11468 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 2 ∈ ℤ) → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
6013, 11, 59sylancl 695 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
6160bicomd 213 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ (2 − 1) ↔ 𝐾 < 2))
6261notbid 307 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ (2 − 1) ↔ ¬ 𝐾 < 2))
6354, 58, 623bitrd 294 . . . . . . 7 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 < 2))
64 2re 11128 . . . . . . . . 9 2 ∈ ℝ
65 lttri3 10159 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐾 = 2 ↔ (¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾)))
6665biimprd 238 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6753, 64, 66sylancl 695 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6867expd 451 . . . . . . 7 (𝐾 ∈ ℕ0 → (¬ 𝐾 < 2 → (¬ 2 < 𝐾𝐾 = 2)))
6963, 68sylbid 230 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 𝐾 → (¬ 2 < 𝐾𝐾 = 2)))
7069com3r 87 . . . . 5 (¬ 2 < 𝐾 → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
7170a1d 25 . . . 4 (¬ 2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
7251, 71pm2.61i 176 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
7310, 72mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺RegUSGraph𝐾) → (1 < 𝐾𝐾 = 2))
7473expimpd 628 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺RegUSGraph𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  c0 3948   class class class wbr 4685  cfv 5926  (class class class)co 6690  Fincfn 7997  cr 9973  0cc0 9974  1c1 9975   < clt 10112  cle 10113  cmin 10304  2c2 11108  0cn0 11330  cz 11415  cuz 11725   mod cmo 12708  #chash 13157  cdvds 15027  cprime 15432  Vtxcvtx 25919  FinUSGraphcfusgr 26253  RegUSGraphcrusgr 26508   ClWWalksN cclwwlkn 26981   FriendGraph cfrgr 27236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-xadd 11985  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-reps 13338  df-csh 13581  df-s2 13639  df-s3 13640  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-gcd 15264  df-prm 15433  df-phi 15518  df-vtx 25921  df-iedg 25922  df-edg 25985  df-uhgr 25998  df-ushgr 25999  df-upgr 26022  df-umgr 26023  df-uspgr 26090  df-usgr 26091  df-fusgr 26254  df-nbgr 26270  df-vtxdg 26418  df-rgr 26509  df-rusgr 26510  df-wlks 26551  df-wlkson 26552  df-trls 26645  df-trlson 26646  df-pths 26668  df-spths 26669  df-pthson 26670  df-spthson 26671  df-wwlks 26778  df-wwlksn 26779  df-wwlksnon 26780  df-wspthsn 26781  df-wspthsnon 26782  df-clwwlk 26950  df-clwwlkn 26983  df-clwwlknon 27061  df-frgr 27237
This theorem is referenced by:  frgrreg  27381
  Copyright terms: Public domain W3C validator