MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlkeqm Structured version   Visualization version   GIF version

Theorem frgr2wwlkeqm 27311
Description: If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 20-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 7-Jan-2022.)
Assertion
Ref Expression
frgr2wwlkeqm ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → ((⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃))

Proof of Theorem frgr2wwlkeqm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1109 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝑃𝑋)
2 eqid 2651 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
32wwlks2onv 26918 . . . 4 ((𝑃𝑋 ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
41, 3sylan 487 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
5 simp3r 1110 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝑄𝑌)
62wwlks2onv 26918 . . . . . . . 8 ((𝑄𝑌 ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
75, 6sylan 487 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
8 frgrusgr 27240 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
9 usgrumgr 26119 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
108, 9syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph)
11103ad2ant1 1102 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝐺 ∈ UMGraph)
12 simpr3 1089 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐵 ∈ (Vtx‘𝐺))
13 simpl 472 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝑄 ∈ (Vtx‘𝐺))
14 simpr1 1087 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐴 ∈ (Vtx‘𝐺))
1512, 13, 143jca 1261 . . . . . . . . . . . . 13 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
162wwlks2onsym 26924 . . . . . . . . . . . . 13 ((𝐺 ∈ UMGraph ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1711, 15, 16syl2anr 494 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
18 simpr1 1087 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝐺 ∈ FriendGraph )
19 3simpb 1079 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
2019ad2antlr 763 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
21 simpr2 1088 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝐴𝐵)
222frgr2wwlkeu 27307 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ 𝐴𝐵) → ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
2318, 20, 21, 22syl3anc 1366 . . . . . . . . . . . . 13 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
24 s3eq2 13661 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑄 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑄𝐵”⟩)
2524eleq1d 2715 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑄 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
2625riota2 6673 . . . . . . . . . . . . . . 15 ((𝑄 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
2726ad4ant14 1317 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
28 simplr2 1124 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝑃 ∈ (Vtx‘𝐺))
29 s3eq2 13661 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑃 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑃𝐵”⟩)
3029eleq1d 2715 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑃 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
3130riota2 6673 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
3228, 31sylan 487 . . . . . . . . . . . . . . . 16 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
33 eqtr2 2671 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄 ∧ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃) → 𝑄 = 𝑃)
3433expcom 450 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃 → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄𝑄 = 𝑃))
3532, 34syl6bi 243 . . . . . . . . . . . . . . 15 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄𝑄 = 𝑃)))
3635com23 86 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄 → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3727, 36sylbid 230 . . . . . . . . . . . . 13 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3823, 37mpdan 703 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3917, 38sylbid 230 . . . . . . . . . . 11 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4039expimpd 628 . . . . . . . . . 10 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4140ex 449 . . . . . . . . 9 (𝑄 ∈ (Vtx‘𝐺) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4241com23 86 . . . . . . . 8 (𝑄 ∈ (Vtx‘𝐺) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
43423ad2ant2 1103 . . . . . . 7 ((𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
447, 43mpcom 38 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4544ex 449 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4645com24 95 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃))))
4746imp 444 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃)))
484, 47mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃))
4948expimpd 628 1 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → ((⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  ∃!wreu 2943  cfv 5926  crio 6650  (class class class)co 6690  2c2 11108  ⟨“cs3 13633  Vtxcvtx 25919  UMGraphcumgr 26021  USGraphcusgr 26089   WWalksNOn cwwlksnon 26775   FriendGraph cfrgr 27236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-edg 25985  df-uhgr 25998  df-upgr 26022  df-umgr 26023  df-usgr 26091  df-wlks 26551  df-wwlks 26778  df-wwlksn 26779  df-wwlksnon 26780  df-frgr 27237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator