Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlk1 Structured version   Visualization version   GIF version

Theorem frgr2wwlk1 27309
 Description: In a friendship graph, there is exactly one walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypothesis
Ref Expression
frgr2wwlkeu.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgr2wwlk1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (#‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1)

Proof of Theorem frgr2wwlk1
Dummy variables 𝑐 𝑑 𝑡 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgr2wwlkeu.v . . . 4 𝑉 = (Vtx‘𝐺)
21frgr2wwlkn0 27308 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅)
31elwwlks2ons3 26920 . . . . . 6 (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
41elwwlks2ons3 26920 . . . . . 6 (𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
53, 4anbi12i 733 . . . . 5 ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))
61frgr2wwlkeu 27307 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
7 s3eq2 13661 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑦𝐵”⟩)
87eleq1d 2715 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
98reu4 3433 . . . . . . . . . . . 12 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (∃𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)))
10 s3eq2 13661 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑑 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
1110eleq1d 2715 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑑 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1211anbi1d 741 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑑 → ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))
13 equequ1 1998 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑑 → (𝑥 = 𝑦𝑑 = 𝑦))
1412, 13imbi12d 333 . . . . . . . . . . . . . . 15 (𝑥 = 𝑑 → (((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) ↔ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑦)))
15 s3eq2 13661 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑐 → ⟨“𝐴𝑦𝐵”⟩ = ⟨“𝐴𝑐𝐵”⟩)
1615eleq1d 2715 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑐 → (⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1716anbi2d 740 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑐 → ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))
18 equequ2 1999 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑐 → (𝑑 = 𝑦𝑑 = 𝑐))
1917, 18imbi12d 333 . . . . . . . . . . . . . . 15 (𝑦 = 𝑐 → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑦) ↔ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)))
2014, 19rspc2va 3354 . . . . . . . . . . . . . 14 (((𝑑𝑉𝑐𝑉) ∧ ∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐))
21 pm3.35 610 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) → 𝑑 = 𝑐)
22 s3eq2 13661 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = 𝑑 → ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
2322equcoms 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑐 → ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
2423adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
25 eqeq12 2664 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → (𝑡 = 𝑤 ↔ ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩))
2625adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → (𝑡 = 𝑤 ↔ ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩))
2724, 26mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → 𝑡 = 𝑤)
2827equcomd 1992 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → 𝑤 = 𝑡)
2928ex 449 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑐 → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → 𝑤 = 𝑡))
3021, 29syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → 𝑤 = 𝑡))
3130ex 449 . . . . . . . . . . . . . . . . . . . . 21 ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → 𝑤 = 𝑡)))
3231com23 86 . . . . . . . . . . . . . . . . . . . 20 ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))
3332exp4b 631 . . . . . . . . . . . . . . . . . . 19 (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑡 = ⟨“𝐴𝑐𝐵”⟩ → (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))))
3433com13 88 . . . . . . . . . . . . . . . . . 18 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))))
3534imp 444 . . . . . . . . . . . . . . . . 17 ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))))
3635com13 88 . . . . . . . . . . . . . . . 16 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))))
3736imp 444 . . . . . . . . . . . . . . 15 ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))
3837com13 88 . . . . . . . . . . . . . 14 (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
3920, 38syl 17 . . . . . . . . . . . . 13 (((𝑑𝑉𝑐𝑉) ∧ ∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4039expcom 450 . . . . . . . . . . . 12 (∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) → ((𝑑𝑉𝑐𝑉) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))))
419, 40simplbiim 659 . . . . . . . . . . 11 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑑𝑉𝑐𝑉) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))))
4241impl 649 . . . . . . . . . 10 (((∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑𝑉) ∧ 𝑐𝑉) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4342rexlimdva 3060 . . . . . . . . 9 ((∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑𝑉) → (∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4443com23 86 . . . . . . . 8 ((∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑𝑉) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4544rexlimdva 3060 . . . . . . 7 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4645impd 446 . . . . . 6 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → 𝑤 = 𝑡))
476, 46syl 17 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → 𝑤 = 𝑡))
485, 47syl5bi 232 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))
4948alrimivv 1896 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∀𝑤𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))
50 eqeuel 3974 . . 3 (((𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅ ∧ ∀𝑤𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
512, 49, 50syl2anc 694 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
52 ovex 6718 . . 3 (𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V
53 euhash1 13246 . . 3 ((𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V → ((#‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
5452, 53mp1i 13 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((#‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
5551, 54mpbird 247 1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (#‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054  ∀wal 1521   = wceq 1523   ∈ wcel 2030  ∃!weu 2498   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  ∃!wreu 2943  Vcvv 3231  ∅c0 3948  ‘cfv 5926  (class class class)co 6690  1c1 9975  2c2 11108  #chash 13157  ⟨“cs3 13633  Vtxcvtx 25919   WWalksNOn cwwlksnon 26775   FriendGraph cfrgr 27236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-edg 25985  df-uhgr 25998  df-upgr 26022  df-umgr 26023  df-usgr 26091  df-wlks 26551  df-wwlks 26778  df-wwlksn 26779  df-wwlksnon 26780  df-frgr 27237 This theorem is referenced by:  frgr2wsp1  27310
 Copyright terms: Public domain W3C validator