![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgr0 | Structured version Visualization version GIF version |
Description: The null graph (graph without vertices) is a friendship graph. (Contributed by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frgr0 | ⊢ ∅ ∈ FriendGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgr0 26358 | . 2 ⊢ ∅ ∈ USGraph | |
2 | ral0 4217 | . 2 ⊢ ∀𝑘 ∈ ∅ ∀𝑙 ∈ (∅ ∖ {𝑘})∃!𝑥 ∈ ∅ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘∅) | |
3 | vtxval0 26152 | . . . 4 ⊢ (Vtx‘∅) = ∅ | |
4 | 3 | eqcomi 2780 | . . 3 ⊢ ∅ = (Vtx‘∅) |
5 | eqid 2771 | . . 3 ⊢ (Edg‘∅) = (Edg‘∅) | |
6 | 4, 5 | frgrusgrfrcond 27441 | . 2 ⊢ (∅ ∈ FriendGraph ↔ (∅ ∈ USGraph ∧ ∀𝑘 ∈ ∅ ∀𝑙 ∈ (∅ ∖ {𝑘})∃!𝑥 ∈ ∅ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘∅))) |
7 | 1, 2, 6 | mpbir2an 690 | 1 ⊢ ∅ ∈ FriendGraph |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 ∀wral 3061 ∃!wreu 3063 ∖ cdif 3720 ⊆ wss 3723 ∅c0 4063 {csn 4316 {cpr 4318 ‘cfv 6031 Vtxcvtx 26095 Edgcedg 26160 USGraphcusgr 26266 FriendGraph cfrgr 27438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fv 6039 df-slot 16068 df-base 16070 df-edgf 26089 df-vtx 26097 df-iedg 26098 df-usgr 26268 df-frgr 27439 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |