![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpuptf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Ref | Expression |
---|---|
frgpuptf | ⊢ (𝜑 → 𝑇:(𝐼 × 2𝑜)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.a | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
2 | 1 | ffvelrnda 6524 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ 𝐵) |
3 | 2 | adantrr 755 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2𝑜)) → (𝐹‘𝑦) ∈ 𝐵) |
4 | frgpup.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
5 | 4 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2𝑜)) → 𝐻 ∈ Grp) |
6 | frgpup.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐻) | |
7 | frgpup.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐻) | |
8 | 6, 7 | grpinvcl 17689 | . . . . 5 ⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑦) ∈ 𝐵) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
9 | 5, 3, 8 | syl2anc 696 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2𝑜)) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
10 | 3, 9 | ifcld 4276 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2𝑜)) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
11 | 10 | ralrimivva 3110 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
12 | frgpup.t | . . 3 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
13 | 12 | fmpt2 7407 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵 ↔ 𝑇:(𝐼 × 2𝑜)⟶𝐵) |
14 | 11, 13 | sylib 208 | 1 ⊢ (𝜑 → 𝑇:(𝐼 × 2𝑜)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∀wral 3051 ∅c0 4059 ifcif 4231 × cxp 5265 ⟶wf 6046 ‘cfv 6050 ↦ cmpt2 6817 2𝑜c2o 7725 Basecbs 16080 Grpcgrp 17644 invgcminusg 17645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-1st 7335 df-2nd 7336 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-minusg 17648 |
This theorem is referenced by: frgpuplem 18406 frgpupf 18407 frgpup1 18409 frgpup2 18410 frgpup3lem 18411 |
Copyright terms: Public domain | W3C validator |