![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpupf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
Ref | Expression |
---|---|
frgpupf | ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
2 | frgpup.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
3 | grpmnd 17630 | . . . . . . 7 ⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mnd) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
5 | 4 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → 𝐻 ∈ Mnd) |
6 | frgpup.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
7 | fviss 6418 | . . . . . . . 8 ⊢ ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜) | |
8 | 6, 7 | eqsstri 3776 | . . . . . . 7 ⊢ 𝑊 ⊆ Word (𝐼 × 2𝑜) |
9 | 8 | sseli 3740 | . . . . . 6 ⊢ (𝑔 ∈ 𝑊 → 𝑔 ∈ Word (𝐼 × 2𝑜)) |
10 | frgpup.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐻) | |
11 | frgpup.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐻) | |
12 | frgpup.t | . . . . . . 7 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
13 | frgpup.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
14 | frgpup.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
15 | 10, 11, 12, 2, 13, 14 | frgpuptf 18383 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2𝑜)⟶𝐵) |
16 | wrdco 13777 | . . . . . 6 ⊢ ((𝑔 ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) | |
17 | 9, 15, 16 | syl2anr 496 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) |
18 | 10 | gsumwcl 17578 | . . . . 5 ⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ 𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
19 | 5, 17, 18 | syl2anc 696 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
20 | frgpup.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
21 | 6, 20 | efger 18331 | . . . . 5 ⊢ ∼ Er 𝑊 |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → ∼ Er 𝑊) |
23 | fvex 6362 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2𝑜)) ∈ V | |
24 | 6, 23 | eqeltri 2835 | . . . . 5 ⊢ 𝑊 ∈ V |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ V) |
26 | coeq2 5436 | . . . . 5 ⊢ (𝑔 = ℎ → (𝑇 ∘ 𝑔) = (𝑇 ∘ ℎ)) | |
27 | 26 | oveq2d 6829 | . . . 4 ⊢ (𝑔 = ℎ → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
28 | 10, 11, 12, 2, 13, 14, 6, 20 | frgpuplem 18385 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∼ ℎ) → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
29 | 1, 19, 22, 25, 27, 28 | qliftfund 8000 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
30 | 1, 19, 22, 25 | qliftf 8002 | . . 3 ⊢ (𝜑 → (Fun 𝐸 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
31 | 29, 30 | mpbid 222 | . 2 ⊢ (𝜑 → 𝐸:(𝑊 / ∼ )⟶𝐵) |
32 | frgpup.g | . . . . . . 7 ⊢ 𝐺 = (freeGrp‘𝐼) | |
33 | eqid 2760 | . . . . . . 7 ⊢ (freeMnd‘(𝐼 × 2𝑜)) = (freeMnd‘(𝐼 × 2𝑜)) | |
34 | 32, 33, 20 | frgpval 18371 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ∼ )) |
35 | 13, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ∼ )) |
36 | 2on 7737 | . . . . . . . . 9 ⊢ 2𝑜 ∈ On | |
37 | xpexg 7125 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V) | |
38 | 13, 36, 37 | sylancl 697 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 × 2𝑜) ∈ V) |
39 | wrdexg 13501 | . . . . . . . 8 ⊢ ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V) | |
40 | fvi 6417 | . . . . . . . 8 ⊢ (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) | |
41 | 38, 39, 40 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) |
42 | 6, 41 | syl5eq 2806 | . . . . . 6 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2𝑜)) |
43 | eqid 2760 | . . . . . . . 8 ⊢ (Base‘(freeMnd‘(𝐼 × 2𝑜))) = (Base‘(freeMnd‘(𝐼 × 2𝑜))) | |
44 | 33, 43 | frmdbas 17590 | . . . . . . 7 ⊢ ((𝐼 × 2𝑜) ∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜)) |
45 | 38, 44 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜)) |
46 | 42, 45 | eqtr4d 2797 | . . . . 5 ⊢ (𝜑 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2𝑜)))) |
47 | fvex 6362 | . . . . . . 7 ⊢ ( ~FG ‘𝐼) ∈ V | |
48 | 20, 47 | eqeltri 2835 | . . . . . 6 ⊢ ∼ ∈ V |
49 | 48 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∼ ∈ V) |
50 | fvexd 6364 | . . . . 5 ⊢ (𝜑 → (freeMnd‘(𝐼 × 2𝑜)) ∈ V) | |
51 | 35, 46, 49, 50 | qusbas 16407 | . . . 4 ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐺)) |
52 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
53 | 51, 52 | syl6reqr 2813 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑊 / ∼ )) |
54 | 53 | feq2d 6192 | . 2 ⊢ (𝜑 → (𝐸:𝑋⟶𝐵 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
55 | 31, 54 | mpbird 247 | 1 ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∅c0 4058 ifcif 4230 〈cop 4327 ↦ cmpt 4881 I cid 5173 × cxp 5264 ran crn 5267 ∘ ccom 5270 Oncon0 5884 Fun wfun 6043 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 2𝑜c2o 7723 Er wer 7908 [cec 7909 / cqs 7910 Word cword 13477 Basecbs 16059 Σg cgsu 16303 /s cqus 16367 Mndcmnd 17495 freeMndcfrmd 17585 Grpcgrp 17623 invgcminusg 17624 ~FG cefg 18319 freeGrpcfrgp 18320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-ot 4330 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-ec 7913 df-qs 7917 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-fzo 12660 df-seq 12996 df-hash 13312 df-word 13485 df-concat 13487 df-s1 13488 df-substr 13489 df-splice 13490 df-s2 13793 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-0g 16304 df-gsum 16305 df-imas 16370 df-qus 16371 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-frmd 17587 df-grp 17626 df-minusg 17627 df-efg 18322 df-frgp 18323 |
This theorem is referenced by: frgpupval 18387 frgpup1 18388 |
Copyright terms: Public domain | W3C validator |