MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup2 Structured version   Visualization version   GIF version

Theorem frgpup2 18396
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
frgpup.u 𝑈 = (varFGrp𝐼)
frgpup.y (𝜑𝐴𝐼)
Assertion
Ref Expression
frgpup2 (𝜑 → (𝐸‘(𝑈𝐴)) = (𝐹𝐴))
Distinct variable groups:   𝑦,𝑔,𝑧,𝐴   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝑈(𝑦,𝑧,𝑔)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpup2
StepHypRef Expression
1 frgpup.i . . . 4 (𝜑𝐼𝑉)
2 frgpup.y . . . 4 (𝜑𝐴𝐼)
3 frgpup.r . . . . 5 = ( ~FG𝐼)
4 frgpup.u . . . . 5 𝑈 = (varFGrp𝐼)
53, 4vrgpval 18387 . . . 4 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
61, 2, 5syl2anc 573 . . 3 (𝜑 → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
76fveq2d 6336 . 2 (𝜑 → (𝐸‘(𝑈𝐴)) = (𝐸‘[⟨“⟨𝐴, ∅⟩”⟩] ))
8 0ex 4924 . . . . . . . 8 ∅ ∈ V
98prid1 4433 . . . . . . 7 ∅ ∈ {∅, 1𝑜}
10 df2o3 7727 . . . . . . 7 2𝑜 = {∅, 1𝑜}
119, 10eleqtrri 2849 . . . . . 6 ∅ ∈ 2𝑜
12 opelxpi 5288 . . . . . 6 ((𝐴𝐼 ∧ ∅ ∈ 2𝑜) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2𝑜))
132, 11, 12sylancl 574 . . . . 5 (𝜑 → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2𝑜))
1413s1cld 13583 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ Word (𝐼 × 2𝑜))
15 frgpup.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
16 2on 7722 . . . . . . 7 2𝑜 ∈ On
17 xpexg 7107 . . . . . . 7 ((𝐼𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
181, 16, 17sylancl 574 . . . . . 6 (𝜑 → (𝐼 × 2𝑜) ∈ V)
19 wrdexg 13511 . . . . . 6 ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V)
20 fvi 6397 . . . . . 6 (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
2118, 19, 203syl 18 . . . . 5 (𝜑 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
2215, 21syl5eq 2817 . . . 4 (𝜑𝑊 = Word (𝐼 × 2𝑜))
2314, 22eleqtrrd 2853 . . 3 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
24 frgpup.b . . . 4 𝐵 = (Base‘𝐻)
25 frgpup.n . . . 4 𝑁 = (invg𝐻)
26 frgpup.t . . . 4 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
27 frgpup.h . . . 4 (𝜑𝐻 ∈ Grp)
28 frgpup.a . . . 4 (𝜑𝐹:𝐼𝐵)
29 frgpup.g . . . 4 𝐺 = (freeGrp‘𝐼)
30 frgpup.x . . . 4 𝑋 = (Base‘𝐺)
31 frgpup.e . . . 4 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
3224, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31frgpupval 18394 . . 3 ((𝜑 ∧ ⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊) → (𝐸‘[⟨“⟨𝐴, ∅⟩”⟩] ) = (𝐻 Σg (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩)))
3323, 32mpdan 667 . 2 (𝜑 → (𝐸‘[⟨“⟨𝐴, ∅⟩”⟩] ) = (𝐻 Σg (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩)))
3424, 25, 26, 27, 1, 28frgpuptf 18390 . . . . . 6 (𝜑𝑇:(𝐼 × 2𝑜)⟶𝐵)
35 s1co 13788 . . . . . 6 ((⟨𝐴, ∅⟩ ∈ (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“(𝑇‘⟨𝐴, ∅⟩)”⟩)
3613, 34, 35syl2anc 573 . . . . 5 (𝜑 → (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“(𝑇‘⟨𝐴, ∅⟩)”⟩)
37 df-ov 6796 . . . . . . 7 (𝐴𝑇∅) = (𝑇‘⟨𝐴, ∅⟩)
38 iftrue 4231 . . . . . . . . . 10 (𝑧 = ∅ → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝐹𝑦))
39 fveq2 6332 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
4038, 39sylan9eqr 2827 . . . . . . . . 9 ((𝑦 = 𝐴𝑧 = ∅) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝐹𝐴))
41 fvex 6342 . . . . . . . . 9 (𝐹𝐴) ∈ V
4240, 26, 41ovmpt2a 6938 . . . . . . . 8 ((𝐴𝐼 ∧ ∅ ∈ 2𝑜) → (𝐴𝑇∅) = (𝐹𝐴))
432, 11, 42sylancl 574 . . . . . . 7 (𝜑 → (𝐴𝑇∅) = (𝐹𝐴))
4437, 43syl5eqr 2819 . . . . . 6 (𝜑 → (𝑇‘⟨𝐴, ∅⟩) = (𝐹𝐴))
4544s1eqd 13581 . . . . 5 (𝜑 → ⟨“(𝑇‘⟨𝐴, ∅⟩)”⟩ = ⟨“(𝐹𝐴)”⟩)
4636, 45eqtrd 2805 . . . 4 (𝜑 → (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“(𝐹𝐴)”⟩)
4746oveq2d 6809 . . 3 (𝜑 → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩)) = (𝐻 Σg ⟨“(𝐹𝐴)”⟩))
4828, 2ffvelrnd 6503 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝐵)
4924gsumws1 17584 . . . 4 ((𝐹𝐴) ∈ 𝐵 → (𝐻 Σg ⟨“(𝐹𝐴)”⟩) = (𝐹𝐴))
5048, 49syl 17 . . 3 (𝜑 → (𝐻 Σg ⟨“(𝐹𝐴)”⟩) = (𝐹𝐴))
5147, 50eqtrd 2805 . 2 (𝜑 → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩)) = (𝐹𝐴))
527, 33, 513eqtrd 2809 1 (𝜑 → (𝐸‘(𝑈𝐴)) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  Vcvv 3351  c0 4063  ifcif 4225  {cpr 4318  cop 4322  cmpt 4863   I cid 5156   × cxp 5247  ran crn 5250  ccom 5253  Oncon0 5866  wf 6027  cfv 6031  (class class class)co 6793  cmpt2 6795  1𝑜c1o 7706  2𝑜c2o 7707  [cec 7894  Word cword 13487  ⟨“cs1 13490  Basecbs 16064   Σg cgsu 16309  Grpcgrp 17630  invgcminusg 17631   ~FG cefg 18326  freeGrpcfrgp 18327  varFGrpcvrgp 18328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-ot 4325  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-substr 13499  df-splice 13500  df-s2 13802  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-0g 16310  df-gsum 16311  df-imas 16376  df-qus 16377  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-frmd 17594  df-grp 17633  df-minusg 17634  df-efg 18329  df-frgp 18330  df-vrgp 18331
This theorem is referenced by:  frgpup3  18398
  Copyright terms: Public domain W3C validator