MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabl Structured version   Visualization version   GIF version

Theorem frgpnabl 18484
Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypothesis
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
Assertion
Ref Expression
frgpnabl (1𝑜𝐼 → ¬ 𝐺 ∈ Abel)

Proof of Theorem frgpnabl
Dummy variables 𝑎 𝑏 𝑥 𝑛 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8115 . . . . 5 Rel ≺
21brrelex2i 5299 . . . 4 (1𝑜𝐼𝐼 ∈ V)
3 1sdom 8318 . . . 4 (𝐼 ∈ V → (1𝑜𝐼 ↔ ∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏))
42, 3syl 17 . . 3 (1𝑜𝐼 → (1𝑜𝐼 ↔ ∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏))
54ibi 256 . 2 (1𝑜𝐼 → ∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏)
6 frgpnabl.g . . . . . 6 𝐺 = (freeGrp‘𝐼)
7 eqid 2770 . . . . . 6 ( I ‘Word (𝐼 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜))
8 eqid 2770 . . . . . 6 ( ~FG𝐼) = ( ~FG𝐼)
9 eqid 2770 . . . . . 6 (+g𝐺) = (+g𝐺)
10 eqid 2770 . . . . . 6 (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
11 eqid 2770 . . . . . 6 (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))
12 eqid 2770 . . . . . 6 (( I ‘Word (𝐼 × 2𝑜)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) = (( I ‘Word (𝐼 × 2𝑜)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥))
13 eqid 2770 . . . . . 6 (varFGrp𝐼) = (varFGrp𝐼)
142ad2antrr 697 . . . . . 6 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝐼 ∈ V)
15 simplrl 754 . . . . . 6 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎𝐼)
16 simplrr 755 . . . . . 6 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝑏𝐼)
17 simpr 471 . . . . . . 7 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Abel)
18 eqid 2770 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
198, 13, 6, 18vrgpf 18387 . . . . . . . . 9 (𝐼 ∈ V → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
2014, 19syl 17 . . . . . . . 8 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
2120, 15ffvelrnd 6503 . . . . . . 7 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp𝐼)‘𝑎) ∈ (Base‘𝐺))
2220, 16ffvelrnd 6503 . . . . . . 7 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp𝐼)‘𝑏) ∈ (Base‘𝐺))
2318, 9ablcom 18416 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((varFGrp𝐼)‘𝑎) ∈ (Base‘𝐺) ∧ ((varFGrp𝐼)‘𝑏) ∈ (Base‘𝐺)) → (((varFGrp𝐼)‘𝑎)(+g𝐺)((varFGrp𝐼)‘𝑏)) = (((varFGrp𝐼)‘𝑏)(+g𝐺)((varFGrp𝐼)‘𝑎)))
2417, 21, 22, 23syl3anc 1475 . . . . . 6 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → (((varFGrp𝐼)‘𝑎)(+g𝐺)((varFGrp𝐼)‘𝑏)) = (((varFGrp𝐼)‘𝑏)(+g𝐺)((varFGrp𝐼)‘𝑎)))
256, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24frgpnabllem2 18483 . . . . 5 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 = 𝑏)
2625ex 397 . . . 4 ((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) → (𝐺 ∈ Abel → 𝑎 = 𝑏))
2726con3d 149 . . 3 ((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel))
2827rexlimdvva 3185 . 2 (1𝑜𝐼 → (∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel))
295, 28mpd 15 1 (1𝑜𝐼 → ¬ 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wrex 3061  Vcvv 3349  cdif 3718  cop 4320  cotp 4322   ciun 4652   class class class wbr 4784  cmpt 4861   I cid 5156   × cxp 5247  ran crn 5250  wf 6027  cfv 6031  (class class class)co 6792  cmpt2 6794  1𝑜c1o 7705  2𝑜c2o 7706  csdm 8107  0cc0 10137  ...cfz 12532  chash 13320  Word cword 13486   splice csplice 13491  ⟨“cs2 13794  Basecbs 16063  +gcplusg 16148   ~FG cefg 18325  freeGrpcfrgp 18326  varFGrpcvrgp 18327  Abelcabl 18400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-ec 7897  df-qs 7901  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-xnn0 11565  df-z 11579  df-dec 11695  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-lsw 13495  df-concat 13496  df-s1 13497  df-substr 13498  df-splice 13499  df-reverse 13500  df-s2 13801  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-0g 16309  df-imas 16375  df-qus 16376  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-frmd 17593  df-grp 17632  df-efg 18328  df-frgp 18329  df-vrgp 18330  df-cmn 18401  df-abl 18402
This theorem is referenced by:  frgpcyg  20136
  Copyright terms: Public domain W3C validator