MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpmhm Structured version   Visualization version   GIF version

Theorem frgpmhm 18224
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpmhm.m 𝑀 = (freeMnd‘(𝐼 × 2𝑜))
frgpmhm.w 𝑊 = (Base‘𝑀)
frgpmhm.g 𝐺 = (freeGrp‘𝐼)
frgpmhm.r = ( ~FG𝐼)
frgpmhm.f 𝐹 = (𝑥𝑊 ↦ [𝑥] )
Assertion
Ref Expression
frgpmhm (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊   𝑥,
Allowed substitution hints:   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem frgpmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2on 7613 . . . . 5 2𝑜 ∈ On
2 xpexg 7002 . . . . 5 ((𝐼𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
31, 2mpan2 707 . . . 4 (𝐼𝑉 → (𝐼 × 2𝑜) ∈ V)
4 frgpmhm.m . . . . 5 𝑀 = (freeMnd‘(𝐼 × 2𝑜))
54frmdmnd 17443 . . . 4 ((𝐼 × 2𝑜) ∈ V → 𝑀 ∈ Mnd)
63, 5syl 17 . . 3 (𝐼𝑉𝑀 ∈ Mnd)
7 frgpmhm.g . . . . 5 𝐺 = (freeGrp‘𝐼)
87frgpgrp 18221 . . . 4 (𝐼𝑉𝐺 ∈ Grp)
9 grpmnd 17476 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
108, 9syl 17 . . 3 (𝐼𝑉𝐺 ∈ Mnd)
116, 10jca 553 . 2 (𝐼𝑉 → (𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd))
12 frgpmhm.w . . . . . . . . . 10 𝑊 = (Base‘𝑀)
134, 12frmdbas 17436 . . . . . . . . 9 ((𝐼 × 2𝑜) ∈ V → 𝑊 = Word (𝐼 × 2𝑜))
14 wrdexg 13347 . . . . . . . . . 10 ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V)
15 fvi 6294 . . . . . . . . . 10 (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
1614, 15syl 17 . . . . . . . . 9 ((𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
1713, 16eqtr4d 2688 . . . . . . . 8 ((𝐼 × 2𝑜) ∈ V → 𝑊 = ( I ‘Word (𝐼 × 2𝑜)))
183, 17syl 17 . . . . . . 7 (𝐼𝑉𝑊 = ( I ‘Word (𝐼 × 2𝑜)))
1918eleq2d 2716 . . . . . 6 (𝐼𝑉 → (𝑥𝑊𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))))
2019biimpa 500 . . . . 5 ((𝐼𝑉𝑥𝑊) → 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜)))
21 frgpmhm.r . . . . . 6 = ( ~FG𝐼)
22 eqid 2651 . . . . . 6 ( I ‘Word (𝐼 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜))
23 eqid 2651 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
247, 21, 22, 23frgpeccl 18220 . . . . 5 (𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜)) → [𝑥] ∈ (Base‘𝐺))
2520, 24syl 17 . . . 4 ((𝐼𝑉𝑥𝑊) → [𝑥] ∈ (Base‘𝐺))
26 frgpmhm.f . . . 4 𝐹 = (𝑥𝑊 ↦ [𝑥] )
2725, 26fmptd 6425 . . 3 (𝐼𝑉𝐹:𝑊⟶(Base‘𝐺))
2822, 21efger 18177 . . . . . . . 8 Er ( I ‘Word (𝐼 × 2𝑜))
29 ereq2 7795 . . . . . . . . 9 (𝑊 = ( I ‘Word (𝐼 × 2𝑜)) → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2𝑜))))
3018, 29syl 17 . . . . . . . 8 (𝐼𝑉 → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2𝑜))))
3128, 30mpbiri 248 . . . . . . 7 (𝐼𝑉 Er 𝑊)
3231adantr 480 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → Er 𝑊)
33 fvex 6239 . . . . . . . 8 (Base‘𝑀) ∈ V
3412, 33eqeltri 2726 . . . . . . 7 𝑊 ∈ V
3534a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → 𝑊 ∈ V)
3632, 35, 26divsfval 16254 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎 ++ 𝑏)) = [(𝑎 ++ 𝑏)] )
37 eqid 2651 . . . . . . . 8 (+g𝑀) = (+g𝑀)
384, 12, 37frmdadd 17439 . . . . . . 7 ((𝑎𝑊𝑏𝑊) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3938adantl 481 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
4039fveq2d 6233 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = (𝐹‘(𝑎 ++ 𝑏)))
4132, 35, 26divsfval 16254 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑎) = [𝑎] )
4232, 35, 26divsfval 16254 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑏) = [𝑏] )
4341, 42oveq12d 6708 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ([𝑎] (+g𝐺)[𝑏] ))
4418eleq2d 2716 . . . . . . . . 9 (𝐼𝑉 → (𝑎𝑊𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜))))
4518eleq2d 2716 . . . . . . . . 9 (𝐼𝑉 → (𝑏𝑊𝑏 ∈ ( I ‘Word (𝐼 × 2𝑜))))
4644, 45anbi12d 747 . . . . . . . 8 (𝐼𝑉 → ((𝑎𝑊𝑏𝑊) ↔ (𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2𝑜)))))
4746biimpa 500 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2𝑜))))
48 eqid 2651 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4922, 7, 21, 48frgpadd 18222 . . . . . . 7 ((𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2𝑜))) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
5047, 49syl 17 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
5143, 50eqtrd 2685 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = [(𝑎 ++ 𝑏)] )
5236, 40, 513eqtr4d 2695 . . . 4 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5352ralrimivva 3000 . . 3 (𝐼𝑉 → ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5434a1i 11 . . . . 5 (𝐼𝑉𝑊 ∈ V)
5531, 54, 26divsfval 16254 . . . 4 (𝐼𝑉 → (𝐹‘∅) = [∅] )
567, 21frgp0 18219 . . . . 5 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
5756simprd 478 . . . 4 (𝐼𝑉 → [∅] = (0g𝐺))
5855, 57eqtrd 2685 . . 3 (𝐼𝑉 → (𝐹‘∅) = (0g𝐺))
5927, 53, 583jca 1261 . 2 (𝐼𝑉 → (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺)))
604frmd0 17444 . . 3 ∅ = (0g𝑀)
61 eqid 2651 . . 3 (0g𝐺) = (0g𝐺)
6212, 23, 37, 48, 60, 61ismhm 17384 . 2 (𝐹 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺))))
6311, 59, 62sylanbrc 699 1 (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  c0 3948  cmpt 4762   I cid 5052   × cxp 5141  Oncon0 5761  wf 5922  cfv 5926  (class class class)co 6690  2𝑜c2o 7599   Er wer 7784  [cec 7785  Word cword 13323   ++ cconcat 13325  Basecbs 15904  +gcplusg 15988  0gc0g 16147  Mndcmnd 17341   MndHom cmhm 17380  freeMndcfrmd 17431  Grpcgrp 17469   ~FG cefg 18165  freeGrpcfrgp 18166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-splice 13336  df-reverse 13337  df-s2 13639  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-0g 16149  df-imas 16215  df-qus 16216  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-frmd 17433  df-grp 17472  df-efg 18168  df-frgp 18169
This theorem is referenced by:  frgpup3lem  18236
  Copyright terms: Public domain W3C validator