![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpeccl | Structured version Visualization version GIF version |
Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
frgp0.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgp0.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpeccl.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
frgpeccl.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
frgpeccl | ⊢ (𝑋 ∈ 𝑊 → [𝑋] ∼ ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgp0.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
2 | fvex 6342 | . . . 4 ⊢ ( ~FG ‘𝐼) ∈ V | |
3 | 1, 2 | eqeltri 2846 | . . 3 ⊢ ∼ ∈ V |
4 | 3 | ecelqsi 7955 | . 2 ⊢ (𝑋 ∈ 𝑊 → [𝑋] ∼ ∈ (𝑊 / ∼ )) |
5 | frgpeccl.w | . . . . . . 7 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
6 | 5 | efgrcl 18335 | . . . . . 6 ⊢ (𝑋 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜))) |
7 | 6 | simpld 482 | . . . . 5 ⊢ (𝑋 ∈ 𝑊 → 𝐼 ∈ V) |
8 | frgp0.m | . . . . . 6 ⊢ 𝐺 = (freeGrp‘𝐼) | |
9 | eqid 2771 | . . . . . 6 ⊢ (freeMnd‘(𝐼 × 2𝑜)) = (freeMnd‘(𝐼 × 2𝑜)) | |
10 | 8, 9, 1 | frgpval 18378 | . . . . 5 ⊢ (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ∼ )) |
11 | 7, 10 | syl 17 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ∼ )) |
12 | 6 | simprd 483 | . . . . 5 ⊢ (𝑋 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2𝑜)) |
13 | 2on 7722 | . . . . . . 7 ⊢ 2𝑜 ∈ On | |
14 | xpexg 7107 | . . . . . . 7 ⊢ ((𝐼 ∈ V ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V) | |
15 | 7, 13, 14 | sylancl 574 | . . . . . 6 ⊢ (𝑋 ∈ 𝑊 → (𝐼 × 2𝑜) ∈ V) |
16 | eqid 2771 | . . . . . . 7 ⊢ (Base‘(freeMnd‘(𝐼 × 2𝑜))) = (Base‘(freeMnd‘(𝐼 × 2𝑜))) | |
17 | 9, 16 | frmdbas 17597 | . . . . . 6 ⊢ ((𝐼 × 2𝑜) ∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜)) |
18 | 15, 17 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝑊 → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜)) |
19 | 12, 18 | eqtr4d 2808 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2𝑜)))) |
20 | 3 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → ∼ ∈ V) |
21 | fvexd 6344 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → (freeMnd‘(𝐼 × 2𝑜)) ∈ V) | |
22 | 11, 19, 20, 21 | qusbas 16413 | . . 3 ⊢ (𝑋 ∈ 𝑊 → (𝑊 / ∼ ) = (Base‘𝐺)) |
23 | frgpeccl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
24 | 22, 23 | syl6eqr 2823 | . 2 ⊢ (𝑋 ∈ 𝑊 → (𝑊 / ∼ ) = 𝐵) |
25 | 4, 24 | eleqtrd 2852 | 1 ⊢ (𝑋 ∈ 𝑊 → [𝑋] ∼ ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 I cid 5156 × cxp 5247 Oncon0 5866 ‘cfv 6031 (class class class)co 6793 2𝑜c2o 7707 [cec 7894 / cqs 7895 Word cword 13487 Basecbs 16064 /s cqus 16373 freeMndcfrmd 17592 ~FG cefg 18326 freeGrpcfrgp 18327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-ec 7898 df-qs 7902 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-imas 16376 df-qus 16377 df-frmd 17594 df-frgp 18330 |
This theorem is referenced by: frgpinv 18384 frgpmhm 18385 vrgpf 18388 frgpup3lem 18397 |
Copyright terms: Public domain | W3C validator |