![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frfnom | Structured version Visualization version GIF version |
Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
frfnom | ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfun 7557 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
2 | funres 5967 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun (rec(𝐹, 𝐴) ↾ ω) |
4 | dmres 5454 | . . 3 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴)) | |
5 | rdgdmlim 7558 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
6 | limomss 7112 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
8 | df-ss 3621 | . . . 4 ⊢ (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω) | |
9 | 7, 8 | mpbi 220 | . . 3 ⊢ (ω ∩ dom rec(𝐹, 𝐴)) = ω |
10 | 4, 9 | eqtri 2673 | . 2 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = ω |
11 | df-fn 5929 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω)) | |
12 | 3, 10, 11 | mpbir2an 975 | 1 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∩ cin 3606 ⊆ wss 3607 dom cdm 5143 ↾ cres 5145 Lim wlim 5762 Fun wfun 5920 Fn wfn 5921 ωcom 7107 reccrdg 7550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 |
This theorem is referenced by: frsucmptn 7579 seqomlem2 7591 seqomlem3 7592 seqomlem4 7593 unblem4 8256 dffi3 8378 inf0 8556 inf3lem6 8568 alephfplem4 8968 alephfp 8969 infpssrlem3 9165 itunifn 9277 hsmexlem5 9290 axdclem2 9380 wunex2 9598 wuncval2 9607 peano5nni 11061 1nn 11069 peano2nn 11070 om2uzrani 12791 om2uzf1oi 12792 uzrdglem 12796 uzrdgfni 12797 uzrdg0i 12798 hashkf 13159 hashgval2 13205 dftrpred2 31843 trpredpred 31852 trpredex 31861 neibastop2lem 32480 |
Copyright terms: Public domain | W3C validator |