MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaun Structured version   Visualization version   GIF version

Theorem fresaun 6113
Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaun ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fresaun
StepHypRef Expression
1 simp1 1081 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐹:𝐴𝐶)
2 inss1 3866 . . . 4 (𝐴𝐵) ⊆ 𝐴
3 fssres 6108 . . . 4 ((𝐹:𝐴𝐶 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
41, 2, 3sylancl 695 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
5 difss 3770 . . . . 5 (𝐴𝐵) ⊆ 𝐴
6 fssres 6108 . . . . 5 ((𝐹:𝐴𝐶 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
71, 5, 6sylancl 695 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
8 simp2 1082 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐺:𝐵𝐶)
9 difss 3770 . . . . 5 (𝐵𝐴) ⊆ 𝐵
10 fssres 6108 . . . . 5 ((𝐺:𝐵𝐶 ∧ (𝐵𝐴) ⊆ 𝐵) → (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶)
118, 9, 10sylancl 695 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶)
12 indifdir 3916 . . . . . 6 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐴 ∩ (𝐵𝐴)) ∖ (𝐵 ∩ (𝐵𝐴)))
13 disjdif 4073 . . . . . . 7 (𝐴 ∩ (𝐵𝐴)) = ∅
1413difeq1i 3757 . . . . . 6 ((𝐴 ∩ (𝐵𝐴)) ∖ (𝐵 ∩ (𝐵𝐴))) = (∅ ∖ (𝐵 ∩ (𝐵𝐴)))
15 0dif 4010 . . . . . 6 (∅ ∖ (𝐵 ∩ (𝐵𝐴))) = ∅
1612, 14, 153eqtri 2677 . . . . 5 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
1716a1i 11 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅)
18 fun2 6105 . . . 4 ((((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶 ∧ (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶) ∧ ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))):((𝐴𝐵) ∪ (𝐵𝐴))⟶𝐶)
197, 11, 17, 18syl21anc 1365 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))):((𝐴𝐵) ∪ (𝐵𝐴))⟶𝐶)
20 indi 3906 . . . . 5 ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = (((𝐴𝐵) ∩ (𝐴𝐵)) ∪ ((𝐴𝐵) ∩ (𝐵𝐴)))
21 inass 3856 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = (𝐴 ∩ (𝐵 ∩ (𝐴𝐵)))
22 disjdif 4073 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
2322ineq2i 3844 . . . . . . 7 (𝐴 ∩ (𝐵 ∩ (𝐴𝐵))) = (𝐴 ∩ ∅)
24 in0 4001 . . . . . . 7 (𝐴 ∩ ∅) = ∅
2521, 23, 243eqtri 2677 . . . . . 6 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
26 incom 3838 . . . . . . . 8 (𝐴𝐵) = (𝐵𝐴)
2726ineq1i 3843 . . . . . . 7 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ (𝐵𝐴))
28 inass 3856 . . . . . . . 8 ((𝐵𝐴) ∩ (𝐵𝐴)) = (𝐵 ∩ (𝐴 ∩ (𝐵𝐴)))
2913ineq2i 3844 . . . . . . . 8 (𝐵 ∩ (𝐴 ∩ (𝐵𝐴))) = (𝐵 ∩ ∅)
30 in0 4001 . . . . . . . 8 (𝐵 ∩ ∅) = ∅
3128, 29, 303eqtri 2677 . . . . . . 7 ((𝐵𝐴) ∩ (𝐵𝐴)) = ∅
3227, 31eqtri 2673 . . . . . 6 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
3325, 32uneq12i 3798 . . . . 5 (((𝐴𝐵) ∩ (𝐴𝐵)) ∪ ((𝐴𝐵) ∩ (𝐵𝐴))) = (∅ ∪ ∅)
34 un0 4000 . . . . 5 (∅ ∪ ∅) = ∅
3520, 33, 343eqtri 2677 . . . 4 ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅
3635a1i 11 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅)
37 fun2 6105 . . 3 ((((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶 ∧ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))):((𝐴𝐵) ∪ (𝐵𝐴))⟶𝐶) ∧ ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶)
384, 19, 36, 37syl21anc 1365 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶)
39 ffn 6083 . . . . 5 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
40 ffn 6083 . . . . 5 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
41 id 22 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
42 resasplit 6112 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
4339, 40, 41, 42syl3an 1408 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
4443feq1d 6068 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺):(𝐴𝐵)⟶𝐶 ↔ ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):(𝐴𝐵)⟶𝐶))
45 un12 3804 . . . . 5 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))
4626uneq1i 3796 . . . . . . 7 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
47 inundif 4079 . . . . . . 7 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
4846, 47eqtri 2673 . . . . . 6 ((𝐴𝐵) ∪ (𝐵𝐴)) = 𝐵
4948uneq2i 3797 . . . . 5 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐴𝐵) ∪ 𝐵)
50 undif1 4076 . . . . 5 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
5145, 49, 503eqtri 2677 . . . 4 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = (𝐴𝐵)
5251feq2i 6075 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶 ↔ ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):(𝐴𝐵)⟶𝐶)
5344, 52syl6rbbr 279 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶 ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
5438, 53mpbid 222 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  cres 5145   Fn wfn 5921  wf 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-fun 5928  df-fn 5929  df-f 5930
This theorem is referenced by:  cvmliftlem10  31402  elmapresaun  37651
  Copyright terms: Public domain W3C validator