![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version |
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6083 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnrel 6027 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5148 Fn wfn 5921 ⟶wf 5922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-fun 5928 df-fn 5929 df-f 5930 |
This theorem is referenced by: fssxp 6098 foconst 6164 fsn 6442 fnwelem 7337 mapsn 7941 axdc3lem4 9313 imasless 16247 gimcnv 17756 gsumval3 18354 lmimcnv 19115 mattpostpos 20308 hmeocnv 21613 metn0 22212 rlimcnp2 24738 wlkn0 26572 mbfresfi 33586 seff 38825 fresin2 39666 mapsnd 39702 freld 39739 cncfuni 40417 fourierdlem48 40689 fourierdlem49 40690 fourierdlem113 40754 sge0cl 40916 |
Copyright terms: Public domain | W3C validator |