Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege97 Structured version   Visualization version   GIF version

Theorem frege97 38773
 Description: The property of following 𝑋 in the 𝑅-sequence is hereditary in the 𝑅-sequence. Proposition 97 of [Frege1879] p. 71. Here we introduce the image of a singleton under a relation as class which stands for the property of following 𝑋 in the 𝑅 -sequence. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege97.x 𝑋𝑈
frege97.r 𝑅𝑊
Assertion
Ref Expression
frege97 𝑅 hereditary ((t+‘𝑅) “ {𝑋})

Proof of Theorem frege97
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frege75 38751 . 2 (∀𝑏(𝑏 ∈ ((t+‘𝑅) “ {𝑋}) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ ((t+‘𝑅) “ {𝑋}))) → 𝑅 hereditary ((t+‘𝑅) “ {𝑋}))
2 frege97.x . . . . 5 𝑋𝑈
3 vex 3352 . . . . 5 𝑏 ∈ V
4 vex 3352 . . . . 5 𝑎 ∈ V
5 frege97.r . . . . 5 𝑅𝑊
62, 3, 4, 5frege96 38772 . . . 4 (𝑋(t+‘𝑅)𝑏 → (𝑏𝑅𝑎𝑋(t+‘𝑅)𝑎))
7 df-br 4785 . . . . 5 (𝑋(t+‘𝑅)𝑏 ↔ ⟨𝑋, 𝑏⟩ ∈ (t+‘𝑅))
82elexi 3362 . . . . . 6 𝑋 ∈ V
98, 3elimasn 5631 . . . . 5 (𝑏 ∈ ((t+‘𝑅) “ {𝑋}) ↔ ⟨𝑋, 𝑏⟩ ∈ (t+‘𝑅))
107, 9bitr4i 267 . . . 4 (𝑋(t+‘𝑅)𝑏𝑏 ∈ ((t+‘𝑅) “ {𝑋}))
11 df-br 4785 . . . . . 6 (𝑋(t+‘𝑅)𝑎 ↔ ⟨𝑋, 𝑎⟩ ∈ (t+‘𝑅))
128, 4elimasn 5631 . . . . . 6 (𝑎 ∈ ((t+‘𝑅) “ {𝑋}) ↔ ⟨𝑋, 𝑎⟩ ∈ (t+‘𝑅))
1311, 12bitr4i 267 . . . . 5 (𝑋(t+‘𝑅)𝑎𝑎 ∈ ((t+‘𝑅) “ {𝑋}))
1413imbi2i 325 . . . 4 ((𝑏𝑅𝑎𝑋(t+‘𝑅)𝑎) ↔ (𝑏𝑅𝑎𝑎 ∈ ((t+‘𝑅) “ {𝑋})))
156, 10, 143imtr3i 280 . . 3 (𝑏 ∈ ((t+‘𝑅) “ {𝑋}) → (𝑏𝑅𝑎𝑎 ∈ ((t+‘𝑅) “ {𝑋})))
1615alrimiv 2006 . 2 (𝑏 ∈ ((t+‘𝑅) “ {𝑋}) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ ((t+‘𝑅) “ {𝑋})))
171, 16mpg 1871 1 𝑅 hereditary ((t+‘𝑅) “ {𝑋})
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1628   ∈ wcel 2144  Vcvv 3349  {csn 4314  ⟨cop 4320   class class class wbr 4784   “ cima 5252  ‘cfv 6031  t+ctcl 13933   hereditary whe 38585 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-frege1 38603  ax-frege2 38604  ax-frege8 38622  ax-frege52a 38670  ax-frege58b 38714 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-ifp 1049  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-seq 13008  df-trcl 13935  df-relexp 13968  df-he 38586 This theorem is referenced by:  frege98  38774
 Copyright terms: Public domain W3C validator