![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege68c | Structured version Visualization version GIF version |
Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege68c | ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege57aid 38668 | . 2 ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) | |
2 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 2 | frege67c 38726 | . 2 ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑))) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1630 ∈ wcel 2139 [wsbc 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-12 2196 ax-ext 2740 ax-frege1 38586 ax-frege2 38587 ax-frege8 38605 ax-frege52a 38653 ax-frege58b 38697 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1051 df-tru 1635 df-fal 1638 df-ex 1854 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-v 3342 df-sbc 3577 |
This theorem is referenced by: frege70 38729 frege77 38736 frege116 38775 |
Copyright terms: Public domain | W3C validator |