Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege58c Structured version   Visualization version   GIF version

Theorem frege58c 38734
Description: Principle related to sp 2206. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege58c.a 𝐴𝐵
Assertion
Ref Expression
frege58c (∀𝑥𝜑[𝐴 / 𝑥]𝜑)

Proof of Theorem frege58c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frege58c.a . 2 𝐴𝐵
2 ax-frege58b 38714 . . . . 5 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
3 sbsbc 3589 . . . . 5 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
42, 3sylib 208 . . . 4 (∀𝑥𝜑[𝑦 / 𝑥]𝜑)
5 dfsbcq 3587 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
64, 5syl5ib 234 . . 3 (𝑦 = 𝐴 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
76vtocleg 3428 . 2 (𝐴𝐵 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
81, 7ax-mp 5 1 (∀𝑥𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1628   = wceq 1630  [wsb 2048  wcel 2144  [wsbc 3585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-12 2202  ax-ext 2750  ax-frege58b 38714
This theorem depends on definitions:  df-bi 197  df-an 383  df-tru 1633  df-ex 1852  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-v 3351  df-sbc 3586
This theorem is referenced by:  frege59c  38735  frege60c  38736  frege61c  38737  frege62c  38738  frege67c  38743  frege72  38748  frege118  38794  frege120  38796
  Copyright terms: Public domain W3C validator