Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133 Structured version   Visualization version   GIF version

Theorem frege133 38810
Description: If the procedure 𝑅 is single-valued and if 𝑀 and 𝑌 follow 𝑋 in the 𝑅-sequence, then 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 133 of [Frege1879] p. 86. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege133.x 𝑋𝑈
frege133.y 𝑌𝑉
frege133.m 𝑀𝑊
frege133.r 𝑅𝑆
Assertion
Ref Expression
frege133 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))

Proof of Theorem frege133
StepHypRef Expression
1 frege133.x . . 3 𝑋𝑈
2 frege133.y . . 3 𝑌𝑉
3 frege133.r . . 3 𝑅𝑆
4 fvex 6363 . . . . 5 (t+‘𝑅) ∈ V
54cnvex 7279 . . . 4 (t+‘𝑅) ∈ V
6 imaexg 7269 . . . 4 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
75, 6ax-mp 5 . . 3 ((t+‘𝑅) “ {𝑀}) ∈ V
8 imaundir 5704 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑀}) = (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀}))
9 imaexg 7269 . . . . . 6 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
104, 9ax-mp 5 . . . . 5 ((t+‘𝑅) “ {𝑀}) ∈ V
11 imai 5636 . . . . . 6 ( I “ {𝑀}) = {𝑀}
12 snex 5057 . . . . . 6 {𝑀} ∈ V
1311, 12eqeltri 2835 . . . . 5 ( I “ {𝑀}) ∈ V
1410, 13unex 7122 . . . 4 (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀})) ∈ V
158, 14eqeltri 2835 . . 3 (((t+‘𝑅) ∪ I ) “ {𝑀}) ∈ V
161, 2, 3, 7, 15frege83 38760 . 2 (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))))
17 frege133.m . . . . . . . 8 𝑀𝑊
1817elexi 3353 . . . . . . 7 𝑀 ∈ V
191elexi 3353 . . . . . . 7 𝑋 ∈ V
2018, 19elimasn 5648 . . . . . 6 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
21 df-br 4805 . . . . . 6 (𝑀(t+‘𝑅)𝑋 ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
2218, 19brcnv 5460 . . . . . 6 (𝑀(t+‘𝑅)𝑋𝑋(t+‘𝑅)𝑀)
2320, 21, 223bitr2i 288 . . . . 5 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑋(t+‘𝑅)𝑀)
24 elun 3896 . . . . . . 7 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
25 df-or 384 . . . . . . 7 ((𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
262elexi 3353 . . . . . . . . . . 11 𝑌 ∈ V
2718, 26elimasn 5648 . . . . . . . . . 10 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
28 df-br 4805 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
2918, 26brcnv 5460 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌𝑌(t+‘𝑅)𝑀)
3027, 28, 293bitr2i 288 . . . . . . . . 9 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑌(t+‘𝑅)𝑀)
3130notbii 309 . . . . . . . 8 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑌(t+‘𝑅)𝑀)
3218, 26elimasn 5648 . . . . . . . . 9 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
33 df-br 4805 . . . . . . . . 9 (𝑀((t+‘𝑅) ∪ I )𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
3432, 33bitr4i 267 . . . . . . . 8 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑌)
3531, 34imbi12i 339 . . . . . . 7 ((¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3624, 25, 353bitri 286 . . . . . 6 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3736imbi2i 325 . . . . 5 ((𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))
3823, 37imbi12i 339 . . . 4 ((𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
3938imbi2i 325 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) ↔ (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4017, 3frege132 38809 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4139, 40sylbi 207 . 2 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4216, 41ax-mp 5 1 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wcel 2139  Vcvv 3340  cun 3713  {csn 4321  cop 4327   class class class wbr 4804   I cid 5173  ccnv 5265  cima 5269  Fun wfun 6043  cfv 6049  t+ctcl 13945   hereditary whe 38586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-frege1 38604  ax-frege2 38605  ax-frege8 38623  ax-frege28 38644  ax-frege31 38648  ax-frege41 38659  ax-frege52a 38671  ax-frege52c 38702  ax-frege58b 38715
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-seq 13016  df-trcl 13947  df-relexp 13980  df-he 38587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator