Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege124d Structured version   Visualization version   GIF version

Theorem frege124d 37879
Description: If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 38107. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege124d.f (𝜑𝐹 ∈ V)
frege124d.x (𝜑𝑋 ∈ dom 𝐹)
frege124d.a (𝜑𝐴 = (𝐹𝑋))
frege124d.xb (𝜑𝑋(t+‘𝐹)𝐵)
frege124d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege124d (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))

Proof of Theorem frege124d
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frege124d.a . . 3 (𝜑𝐴 = (𝐹𝑋))
2 frege124d.fun . . . . 5 (𝜑 → Fun 𝐹)
3 frege124d.xb . . . . . . 7 (𝜑𝑋(t+‘𝐹)𝐵)
41eqcomd 2627 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) = 𝐴)
5 frege124d.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ dom 𝐹)
6 funbrfvb 6236 . . . . . . . . . . . 12 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹𝑋) = 𝐴𝑋𝐹𝐴))
72, 5, 6syl2anc 693 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑋) = 𝐴𝑋𝐹𝐴))
84, 7mpbid 222 . . . . . . . . . 10 (𝜑𝑋𝐹𝐴)
9 funeu 5911 . . . . . . . . . 10 ((Fun 𝐹𝑋𝐹𝐴) → ∃!𝑎 𝑋𝐹𝑎)
102, 8, 9syl2anc 693 . . . . . . . . 9 (𝜑 → ∃!𝑎 𝑋𝐹𝑎)
11 fvex 6199 . . . . . . . . . . . . 13 (𝐹𝑋) ∈ V
121, 11syl6eqel 2708 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
13 sbcan 3476 . . . . . . . . . . . . 13 ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ ([𝐴 / 𝑎]𝑋𝐹𝑎[𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵))
14 sbcbr2g 4708 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎𝑋𝐹𝐴 / 𝑎𝑎))
15 csbvarg 4001 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → 𝐴 / 𝑎𝑎 = 𝐴)
1615breq2d 4663 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (𝑋𝐹𝐴 / 𝑎𝑎𝑋𝐹𝐴))
1714, 16bitrd 268 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎𝑋𝐹𝐴))
18 sbcng 3474 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ [𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵))
19 sbcbr1g 4707 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵𝐴 / 𝑎𝑎(t+‘𝐹)𝐵))
2015breq1d 4661 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝐴 / 𝑎𝑎(t+‘𝐹)𝐵𝐴(t+‘𝐹)𝐵))
2119, 20bitrd 268 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵𝐴(t+‘𝐹)𝐵))
2221notbid 308 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (¬ [𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵))
2318, 22bitrd 268 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵))
2417, 23anbi12d 747 . . . . . . . . . . . . 13 (𝐴 ∈ V → (([𝐴 / 𝑎]𝑋𝐹𝑎[𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
2513, 24syl5bb 272 . . . . . . . . . . . 12 (𝐴 ∈ V → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
2612, 25syl 17 . . . . . . . . . . 11 (𝜑 → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
27 spesbc 3519 . . . . . . . . . . 11 ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵))
2826, 27syl6bir 244 . . . . . . . . . 10 (𝜑 → ((𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)))
298, 28mpand 711 . . . . . . . . 9 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)))
30 eupicka 2536 . . . . . . . . 9 ((∃!𝑎 𝑋𝐹𝑎 ∧ ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)) → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵))
3110, 29, 30syl6an 568 . . . . . . . 8 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵)))
32 frege124d.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
33 funrel 5903 . . . . . . . . . . . . . 14 (Fun 𝐹 → Rel 𝐹)
342, 33syl 17 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
35 reltrclfv 13752 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
3632, 34, 35syl2anc 693 . . . . . . . . . . . 12 (𝜑 → Rel (t+‘𝐹))
37 brrelex2 5155 . . . . . . . . . . . 12 ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐵) → 𝐵 ∈ V)
3836, 3, 37syl2anc 693 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
39 brcog 5286 . . . . . . . . . . 11 ((𝑋 ∈ dom 𝐹𝐵 ∈ V) → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
405, 38, 39syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
4140notbid 308 . . . . . . . . 9 (𝜑 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ¬ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
42 alinexa 1769 . . . . . . . . 9 (∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵))
4341, 42syl6rbbr 279 . . . . . . . 8 (𝜑 → (∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
4431, 43sylibd 229 . . . . . . 7 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
45 brdif 4703 . . . . . . . 8 (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵 ↔ (𝑋(t+‘𝐹)𝐵 ∧ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
4645simplbi2 655 . . . . . . 7 (𝑋(t+‘𝐹)𝐵 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵))
473, 44, 46sylsyld 61 . . . . . 6 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵))
48 trclfvdecomr 37846 . . . . . . . . . . 11 (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
4932, 48syl 17 . . . . . . . . . 10 (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
50 uncom 3755 . . . . . . . . . 10 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹)
5149, 50syl6eq 2671 . . . . . . . . 9 (𝜑 → (t+‘𝐹) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
52 eqimss 3655 . . . . . . . . 9 ((t+‘𝐹) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹) → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
5351, 52syl 17 . . . . . . . 8 (𝜑 → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
54 ssundif 4050 . . . . . . . 8 ((t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹) ↔ ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹)
5553, 54sylib 208 . . . . . . 7 (𝜑 → ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹)
5655ssbrd 4694 . . . . . 6 (𝜑 → (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵𝑋𝐹𝐵))
5747, 56syld 47 . . . . 5 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝑋𝐹𝐵))
58 funbrfv 6232 . . . . 5 (Fun 𝐹 → (𝑋𝐹𝐵 → (𝐹𝑋) = 𝐵))
592, 57, 58sylsyld 61 . . . 4 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → (𝐹𝑋) = 𝐵))
60 eqcom 2628 . . . 4 ((𝐹𝑋) = 𝐵𝐵 = (𝐹𝑋))
6159, 60syl6ib 241 . . 3 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝐵 = (𝐹𝑋)))
62 eqtr3 2642 . . 3 ((𝐴 = (𝐹𝑋) ∧ 𝐵 = (𝐹𝑋)) → 𝐴 = 𝐵)
631, 61, 62syl6an 568 . 2 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))
6463orrd 393 1 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1480   = wceq 1482  wex 1703  wcel 1989  ∃!weu 2469  Vcvv 3198  [wsbc 3433  csb 3531  cdif 3569  cun 3570  wss 3572   class class class wbr 4651  dom cdm 5112  ccom 5116  Rel wrel 5117  Fun wfun 5880  cfv 5886  t+ctcl 13718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-seq 12797  df-trcl 13720  df-relexp 13755
This theorem is referenced by:  frege126d  37880
  Copyright terms: Public domain W3C validator