MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frc Structured version   Visualization version   GIF version

Theorem frc 5109
Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 19-Nov-2014.)
Hypothesis
Ref Expression
frc.1 𝐵 ∈ V
Assertion
Ref Expression
frc ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem frc
StepHypRef Expression
1 frc.1 . . . 4 𝐵 ∈ V
2 fri 5105 . . . 4 (((𝐵 ∈ V ∧ 𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
31, 2mpanl1 716 . . 3 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
433impb 1279 . 2 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5 rabeq0 3990 . . 3 ({𝑦𝐵𝑦𝑅𝑥} = ∅ ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
65rexbii 3070 . 2 (∃𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} = ∅ ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
74, 6sylibr 224 1 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  wss 3607  c0 3948   class class class wbr 4685   Fr wfr 5099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-in 3614  df-ss 3621  df-nul 3949  df-fr 5102
This theorem is referenced by:  frirr  5120  epfrc  5129
  Copyright terms: Public domain W3C validator