MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2cbv Structured version   Visualization version   GIF version

Theorem fpwwe2cbv 9565
Description: Lemma for fpwwe2 9578. (Contributed by Mario Carneiro, 3-Jun-2015.)
Hypothesis
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
Assertion
Ref Expression
fpwwe2cbv 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
Distinct variable groups:   𝑦,𝑢   𝑟,𝑎,𝑠,𝑢,𝑣,𝑥,𝑦,𝑧,𝐹   𝐴,𝑎,𝑟,𝑠,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑣,𝑢)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑠,𝑟,𝑎)

Proof of Theorem fpwwe2cbv
StepHypRef Expression
1 fpwwe2.1 . 2 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
2 simpl 474 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑥 = 𝑎)
32sseq1d 3738 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥𝐴𝑎𝐴))
4 simpr 479 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
52sqxpeqd 5250 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
64, 5sseq12d 3740 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
73, 6anbi12d 749 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎))))
8 weeq2 5207 . . . . . 6 (𝑥 = 𝑎 → (𝑟 We 𝑥𝑟 We 𝑎))
9 weeq1 5206 . . . . . 6 (𝑟 = 𝑠 → (𝑟 We 𝑎𝑠 We 𝑎))
108, 9sylan9bb 738 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 We 𝑥𝑠 We 𝑎))
11 id 22 . . . . . . . . . . 11 (𝑢 = 𝑣𝑢 = 𝑣)
1211sqxpeqd 5250 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑢 × 𝑢) = (𝑣 × 𝑣))
1312ineq2d 3922 . . . . . . . . . . 11 (𝑢 = 𝑣 → (𝑟 ∩ (𝑢 × 𝑢)) = (𝑟 ∩ (𝑣 × 𝑣)))
1411, 13oveq12d 6783 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = (𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))))
1514eqeq1d 2726 . . . . . . . . 9 (𝑢 = 𝑣 → ((𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑦))
1615cbvsbcv 3571 . . . . . . . 8 ([(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦[(𝑟 “ {𝑦}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑦)
17 sneq 4295 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1817imaeq2d 5576 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑟 “ {𝑦}) = (𝑟 “ {𝑧}))
19 eqeq2 2735 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑦 ↔ (𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧))
2018, 19sbceqbid 3548 . . . . . . . 8 (𝑦 = 𝑧 → ([(𝑟 “ {𝑦}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑦[(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧))
2116, 20syl5bb 272 . . . . . . 7 (𝑦 = 𝑧 → ([(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦[(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧))
2221cbvralv 3274 . . . . . 6 (∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑧𝑥 [(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧)
234cnveqd 5405 . . . . . . . . 9 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
2423imaeq1d 5575 . . . . . . . 8 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 “ {𝑧}) = (𝑠 “ {𝑧}))
254ineq1d 3921 . . . . . . . . . 10 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 ∩ (𝑣 × 𝑣)) = (𝑠 ∩ (𝑣 × 𝑣)))
2625oveq2d 6781 . . . . . . . . 9 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = (𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))))
2726eqeq1d 2726 . . . . . . . 8 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧 ↔ (𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))
2824, 27sbceqbid 3548 . . . . . . 7 ((𝑥 = 𝑎𝑟 = 𝑠) → ([(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧[(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))
292, 28raleqbidv 3255 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑧𝑥 [(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧 ↔ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))
3022, 29syl5bb 272 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))
3110, 30anbi12d 749 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦) ↔ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧)))
327, 31anbi12d 749 . . 3 ((𝑥 = 𝑎𝑟 = 𝑠) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))))
3332cbvopabv 4830 . 2 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
341, 33eqtri 2746 1 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1596  wral 3014  [wsbc 3541  cin 3679  wss 3680  {csn 4285  {copab 4820   We wwe 5176   × cxp 5216  ccnv 5217  cima 5221  (class class class)co 6765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-cnv 5226  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fv 6009  df-ov 6768
This theorem is referenced by:  fpwwe2lem12  9576  fpwwe2lem13  9577  canthwe  9586  pwfseqlem5  9598
  Copyright terms: Public domain W3C validator