MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwipodrs Structured version   Visualization version   GIF version

Theorem fpwipodrs 17372
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fpwipodrs (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)

Proof of Theorem fpwipodrs
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4980 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 inex1g 4935 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
31, 2syl 17 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ∈ V)
4 0elpw 4965 . . . 4 ∅ ∈ 𝒫 𝐴
5 0fin 8344 . . . 4 ∅ ∈ Fin
6 elin 3947 . . . 4 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
74, 5, 6mpbir2an 690 . . 3 ∅ ∈ (𝒫 𝐴 ∩ Fin)
8 ne0i 4069 . . 3 (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅)
97, 8mp1i 13 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
10 elin 3947 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin))
11 elin 3947 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin))
12 elpwi 4307 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
13 elpwi 4307 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
1412, 13anim12i 600 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝐴𝑦𝐴))
15 unss 3938 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) ↔ (𝑥𝑦) ⊆ 𝐴)
16 vex 3354 . . . . . . . . . . . 12 𝑥 ∈ V
17 vex 3354 . . . . . . . . . . . 12 𝑦 ∈ V
1816, 17unex 7103 . . . . . . . . . . 11 (𝑥𝑦) ∈ V
1918elpw 4303 . . . . . . . . . 10 ((𝑥𝑦) ∈ 𝒫 𝐴 ↔ (𝑥𝑦) ⊆ 𝐴)
2015, 19bitr4i 267 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) ↔ (𝑥𝑦) ∈ 𝒫 𝐴)
2114, 20sylib 208 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝑦) ∈ 𝒫 𝐴)
2221ad2ant2r 741 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ 𝒫 𝐴)
23 unfi 8383 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
2423ad2ant2l 740 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ Fin)
2522, 24elind 3949 . . . . . 6 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
2610, 11, 25syl2anb 585 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
27 ssid 3773 . . . . 5 (𝑥𝑦) ⊆ (𝑥𝑦)
28 sseq2 3776 . . . . . 6 (𝑧 = (𝑥𝑦) → ((𝑥𝑦) ⊆ 𝑧 ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
2928rspcev 3460 . . . . 5 (((𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
3026, 27, 29sylancl 574 . . . 4 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
3130rgen2a 3126 . . 3 𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧
3231a1i 11 . 2 (𝐴𝑉 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
33 isipodrs 17369 . 2 ((toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset ↔ ((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅ ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧))
343, 9, 32, 33syl3anbrc 1428 1 (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2145  wne 2943  wral 3061  wrex 3062  Vcvv 3351  cun 3721  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297  cfv 6031  Fincfn 8109  Dirsetcdrs 17135  toInccipo 17359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-tset 16168  df-ple 16169  df-ocomp 16171  df-preset 17136  df-drs 17137  df-poset 17154  df-ipo 17360
This theorem is referenced by:  isacs5lem  17377  isnacs3  37799
  Copyright terms: Public domain W3C validator