![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodsplitf | Structured version Visualization version GIF version |
Description: Split a finite product into two parts. A version of fprodsplit 14740 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fprodsplitf.kph | ⊢ Ⅎ𝑘𝜑 |
fprodsplitf.in | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
fprodsplitf.un | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
fprodsplitf.fi | ⊢ (𝜑 → 𝑈 ∈ Fin) |
fprodsplitf.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
fprodsplitf | ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1a 3575 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) | |
2 | nfcv 2793 | . . . 4 ⊢ Ⅎ𝑗𝑈 | |
3 | nfcv 2793 | . . . 4 ⊢ Ⅎ𝑘𝑈 | |
4 | nfcv 2793 | . . . 4 ⊢ Ⅎ𝑗𝐶 | |
5 | nfcsb1v 3582 | . . . 4 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvprod 14689 | . . 3 ⊢ ∏𝑘 ∈ 𝑈 𝐶 = ∏𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = ∏𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶) |
8 | fprodsplitf.in | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
9 | fprodsplitf.un | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
10 | fprodsplitf.fi | . . 3 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
11 | fprodsplitf.kph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
12 | nfv 1883 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑈 | |
13 | 11, 12 | nfan 1868 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑈) |
14 | 5 | nfel1 2808 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ |
15 | 13, 14 | nfim 1865 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
16 | eleq1 2718 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑈 ↔ 𝑗 ∈ 𝑈)) | |
17 | 16 | anbi2d 740 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑈) ↔ (𝜑 ∧ 𝑗 ∈ 𝑈))) |
18 | 1 | eleq1d 2715 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ)) |
19 | 17, 18 | imbi12d 333 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ))) |
20 | fprodsplitf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
21 | 15, 19, 20 | chvar 2298 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
22 | 8, 9, 10, 21 | fprodsplit 14740 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 = (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 · ∏𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶)) |
23 | 4, 5, 1 | cbvprodi 14691 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 |
24 | 4, 5, 1 | cbvprodi 14691 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶 |
25 | 23, 24 | oveq12i 6702 | . . . 4 ⊢ (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶) = (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 · ∏𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) |
26 | 25 | eqcomi 2660 | . . 3 ⊢ (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 · ∏𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶) |
27 | 26 | a1i 11 | . 2 ⊢ (𝜑 → (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 · ∏𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
28 | 7, 22, 27 | 3eqtrd 2689 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 ⦋csb 3566 ∪ cun 3605 ∩ cin 3606 ∅c0 3948 (class class class)co 6690 Fincfn 7997 ℂcc 9972 · cmul 9979 ∏cprod 14679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-prod 14680 |
This theorem is referenced by: fprodsplitsn 14764 fprodsplit1f 14765 |
Copyright terms: Public domain | W3C validator |