![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodsplit1f | Structured version Visualization version GIF version |
Description: Separate out a term in a finite product. A version of fprodsplit1 40143 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fprodsplit1f.kph | ⊢ Ⅎ𝑘𝜑 |
fprodsplit1f.fk | ⊢ (𝜑 → Ⅎ𝑘𝐷) |
fprodsplit1f.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodsplit1f.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fprodsplit1f.c | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
fprodsplit1f.d | ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
fprodsplit1f | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplit1f.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | disjdif 4073 | . . . 4 ⊢ ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅) |
4 | fprodsplit1f.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
5 | snssi 4371 | . . . . . 6 ⊢ (𝐶 ∈ 𝐴 → {𝐶} ⊆ 𝐴) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → {𝐶} ⊆ 𝐴) |
7 | undif 4082 | . . . . 5 ⊢ ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) | |
8 | 6, 7 | sylib 208 | . . . 4 ⊢ (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) |
9 | 8 | eqcomd 2657 | . . 3 ⊢ (𝜑 → 𝐴 = ({𝐶} ∪ (𝐴 ∖ {𝐶}))) |
10 | fprodsplit1f.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
11 | fprodsplit1f.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
12 | 1, 3, 9, 10, 11 | fprodsplitf 14763 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
13 | fprodsplit1f.fk | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑘𝐷) | |
14 | fprodsplit1f.d | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) | |
15 | 1, 13, 4, 14 | csbiedf 3587 | . . . . . 6 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 = 𝐷) |
16 | 15 | eqcomd 2657 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = ⦋𝐶 / 𝑘⦌𝐵) |
17 | 4 | ancli 573 | . . . . . . . 8 ⊢ (𝜑 → (𝜑 ∧ 𝐶 ∈ 𝐴)) |
18 | nfcv 2793 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐶 | |
19 | nfv 1883 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝐶 ∈ 𝐴 | |
20 | 1, 19 | nfan 1868 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐶 ∈ 𝐴) |
21 | 18 | nfcsb1 3581 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 |
22 | nfcv 2793 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘ℂ | |
23 | 21, 22 | nfel 2806 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ |
24 | 20, 23 | nfim 1865 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
25 | eleq1 2718 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝐶 → (𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
26 | 25 | anbi2d 740 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐶 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝐶 ∈ 𝐴))) |
27 | csbeq1a 3575 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝐶 → 𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
28 | 27 | eleq1d 2715 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
29 | 26, 28 | imbi12d 333 | . . . . . . . . 9 ⊢ (𝑘 = 𝐶 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ))) |
30 | 18, 24, 29, 11 | vtoclgf 3295 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐴 → ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
31 | 4, 17, 30 | sylc 65 | . . . . . . 7 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
32 | 16, 31 | eqeltrd 2730 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
33 | 15, 32 | eqeltrd 2730 | . . . . 5 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
34 | prodsns 14746 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
35 | 4, 33, 34 | syl2anc 694 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = ⦋𝐶 / 𝑘⦌𝐵) |
36 | 35, 15 | eqtrd 2685 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐷) |
37 | 36 | oveq1d 6705 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵) = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
38 | 12, 37 | eqtrd 2685 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 Ⅎwnfc 2780 ⦋csb 3566 ∖ cdif 3604 ∪ cun 3605 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {csn 4210 (class class class)co 6690 Fincfn 7997 ℂcc 9972 · cmul 9979 ∏cprod 14679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-prod 14680 |
This theorem is referenced by: fprodeq0g 14769 fprodsplit1 40143 fprod0 40146 dvmptfprodlem 40477 |
Copyright terms: Public domain | W3C validator |