![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodm1 | Structured version Visualization version GIF version |
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.) |
Ref | Expression |
---|---|
fprodm1.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fprodm1.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fprodm1.3 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fprodm1 | ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzp1nel 12609 | . . . . 5 ⊢ ¬ ((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) | |
2 | fprodm1.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
3 | eluzelz 11881 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
5 | 4 | zcnd 11667 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
6 | 1cnd 10240 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
7 | 5, 6 | npcand 10580 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
8 | 7 | eleq1d 2816 | . . . . 5 ⊢ (𝜑 → (((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) ↔ 𝑁 ∈ (𝑀...(𝑁 − 1)))) |
9 | 1, 8 | mtbii 315 | . . . 4 ⊢ (𝜑 → ¬ 𝑁 ∈ (𝑀...(𝑁 − 1))) |
10 | disjsn 4382 | . . . 4 ⊢ (((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (𝑀...(𝑁 − 1))) | |
11 | 9, 10 | sylibr 224 | . . 3 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
12 | eluzel2 11876 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
14 | peano2zm 11604 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑀 − 1) ∈ ℤ) |
16 | 13 | zcnd 11667 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
17 | 16, 6 | npcand 10580 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
18 | 17 | fveq2d 6348 | . . . . . . 7 ⊢ (𝜑 → (ℤ≥‘((𝑀 − 1) + 1)) = (ℤ≥‘𝑀)) |
19 | 2, 18 | eleqtrrd 2834 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) |
20 | eluzp1m1 11895 | . . . . . 6 ⊢ (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) | |
21 | 15, 19, 20 | syl2anc 696 | . . . . 5 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) |
22 | fzsuc2 12583 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
23 | 13, 21, 22 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
24 | 7 | oveq2d 6821 | . . . 4 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
25 | 7 | sneqd 4325 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
26 | 25 | uneq2d 3902 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
27 | 23, 24, 26 | 3eqtr3d 2794 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
28 | fzfid 12958 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
29 | fprodm1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
30 | 11, 27, 28, 29 | fprodsplit 14887 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴)) |
31 | eluzfz2 12534 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
32 | 2, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
33 | 29 | ralrimiva 3096 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
34 | fprodm1.3 | . . . . . . 7 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) | |
35 | 34 | eleq1d 2816 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
36 | 35 | rspcv 3437 | . . . . 5 ⊢ (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐵 ∈ ℂ)) |
37 | 32, 33, 36 | sylc 65 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
38 | 34 | prodsn 14883 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵) |
39 | 2, 37, 38 | syl2anc 696 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵) |
40 | 39 | oveq2d 6821 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
41 | 30, 40 | eqtrd 2786 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 ∪ cun 3705 ∩ cin 3706 ∅c0 4050 {csn 4313 ‘cfv 6041 (class class class)co 6805 ℂcc 10118 1c1 10121 + caddc 10123 · cmul 10125 − cmin 10450 ℤcz 11561 ℤ≥cuz 11871 ...cfz 12511 ∏cprod 14826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8505 df-oi 8572 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-n0 11477 df-z 11562 df-uz 11872 df-rp 12018 df-fz 12512 df-fzo 12652 df-seq 12988 df-exp 13047 df-hash 13304 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-clim 14410 df-prod 14827 |
This theorem is referenced by: fprodp1 14890 fprodm1s 14891 risefacp1 14951 fallfacp1 14952 prmop1 15936 bcprod 31923 |
Copyright terms: Public domain | W3C validator |