MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodge0 Structured version   Visualization version   GIF version

Theorem fprodge0 14768
Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge0.kph 𝑘𝜑
fprodge0.a (𝜑𝐴 ∈ Fin)
fprodge0.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodge0.0leb ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
fprodge0 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodge0.kph . . 3 𝑘𝜑
2 elrege0 12316 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
32simplbi 475 . . . . . 6 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℝ)
43ssriv 3640 . . . . 5 (0[,)+∞) ⊆ ℝ
5 ax-resscn 10031 . . . . 5 ℝ ⊆ ℂ
64, 5sstri 3645 . . . 4 (0[,)+∞) ⊆ ℂ
76a1i 11 . . 3 (𝜑 → (0[,)+∞) ⊆ ℂ)
8 ge0mulcl 12323 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
98adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
10 fprodge0.a . . 3 (𝜑𝐴 ∈ Fin)
11 fprodge0.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
12 fprodge0.0leb . . . 4 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
13 elrege0 12316 . . . 4 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1411, 12, 13sylanbrc 699 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
15 1re 10077 . . . . . 6 1 ∈ ℝ
16 0le1 10589 . . . . . 6 0 ≤ 1
17 ltpnf 11992 . . . . . . 7 (1 ∈ ℝ → 1 < +∞)
1815, 17ax-mp 5 . . . . . 6 1 < +∞
1915, 16, 183pm3.2i 1259 . . . . 5 (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)
20 0e0icopnf 12320 . . . . . . 7 0 ∈ (0[,)+∞)
214, 20sselii 3633 . . . . . 6 0 ∈ ℝ
22 pnfxr 10130 . . . . . 6 +∞ ∈ ℝ*
23 elico2 12275 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
2421, 22, 23mp2an 708 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
2519, 24mpbir 221 . . . 4 1 ∈ (0[,)+∞)
2625a1i 11 . . 3 (𝜑 → 1 ∈ (0[,)+∞))
271, 7, 9, 10, 14, 26fprodcllemf 14732 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (0[,)+∞))
28 0xr 10124 . . . 4 0 ∈ ℝ*
2928a1i 11 . . 3 (∏𝑘𝐴 𝐵 ∈ (0[,)+∞) → 0 ∈ ℝ*)
3022a1i 11 . . 3 (∏𝑘𝐴 𝐵 ∈ (0[,)+∞) → +∞ ∈ ℝ*)
31 id 22 . . 3 (∏𝑘𝐴 𝐵 ∈ (0[,)+∞) → ∏𝑘𝐴 𝐵 ∈ (0[,)+∞))
32 icogelb 12263 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝐴 𝐵 ∈ (0[,)+∞)) → 0 ≤ ∏𝑘𝐴 𝐵)
3329, 30, 31, 32syl3anc 1366 . 2 (∏𝑘𝐴 𝐵 ∈ (0[,)+∞) → 0 ≤ ∏𝑘𝐴 𝐵)
3427, 33syl 17 1 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054  wnf 1748  wcel 2030  wss 3607   class class class wbr 4685  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  [,)cico 12215  cprod 14679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-prod 14680
This theorem is referenced by:  fprodle  14771  hoiprodcl  41082  hoiprodcl3  41115  hoidmvcl  41117  hsphoidmvle2  41120  hsphoidmvle  41121
  Copyright terms: Public domain W3C validator