![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodeq02 | Structured version Visualization version GIF version |
Description: If one of the factors is zero the product is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
Ref | Expression |
---|---|
fprodeq02.1 | ⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) |
fprodeq02.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodeq02.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fprodeq02.k | ⊢ (𝜑 → 𝐾 ∈ 𝐴) |
fprodeq02.c | ⊢ (𝜑 → 𝐶 = 0) |
Ref | Expression |
---|---|
fprodeq02 | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjdif 4185 | . . . 4 ⊢ ({𝐾} ∩ (𝐴 ∖ {𝐾})) = ∅ | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐾} ∩ (𝐴 ∖ {𝐾})) = ∅) |
3 | fprodeq02.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ 𝐴) | |
4 | 3 | snssd 4486 | . . . . 5 ⊢ (𝜑 → {𝐾} ⊆ 𝐴) |
5 | undif 4194 | . . . . 5 ⊢ ({𝐾} ⊆ 𝐴 ↔ ({𝐾} ∪ (𝐴 ∖ {𝐾})) = 𝐴) | |
6 | 4, 5 | sylib 208 | . . . 4 ⊢ (𝜑 → ({𝐾} ∪ (𝐴 ∖ {𝐾})) = 𝐴) |
7 | 6 | eqcomd 2767 | . . 3 ⊢ (𝜑 → 𝐴 = ({𝐾} ∪ (𝐴 ∖ {𝐾}))) |
8 | fprodeq02.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
9 | fprodeq02.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
10 | 2, 7, 8, 9 | fprodsplit 14916 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (∏𝑘 ∈ {𝐾}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵)) |
11 | fprodeq02.c | . . . . . 6 ⊢ (𝜑 → 𝐶 = 0) | |
12 | 0cnd 10246 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℂ) | |
13 | 11, 12 | eqeltrd 2840 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
14 | fprodeq02.1 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) | |
15 | 14 | prodsn 14912 | . . . . 5 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → ∏𝑘 ∈ {𝐾}𝐵 = 𝐶) |
16 | 3, 13, 15 | syl2anc 696 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ {𝐾}𝐵 = 𝐶) |
17 | 16, 11 | eqtrd 2795 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐾}𝐵 = 0) |
18 | 17 | oveq1d 6830 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐾}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵) = (0 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵)) |
19 | diffi 8360 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝐾}) ∈ Fin) | |
20 | 8, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ {𝐾}) ∈ Fin) |
21 | difssd 3882 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∖ {𝐾}) ⊆ 𝐴) | |
22 | 21 | sselda 3745 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐾})) → 𝑘 ∈ 𝐴) |
23 | 22, 9 | syldan 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐾})) → 𝐵 ∈ ℂ) |
24 | 20, 23 | fprodcl 14902 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵 ∈ ℂ) |
25 | 24 | mul02d 10447 | . 2 ⊢ (𝜑 → (0 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵) = 0) |
26 | 10, 18, 25 | 3eqtrd 2799 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∖ cdif 3713 ∪ cun 3714 ∩ cin 3715 ⊆ wss 3716 ∅c0 4059 {csn 4322 (class class class)co 6815 Fincfn 8124 ℂcc 10147 0cc0 10149 · cmul 10154 ∏cprod 14855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-fz 12541 df-fzo 12681 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-clim 14439 df-prod 14856 |
This theorem is referenced by: fprodex01 29902 |
Copyright terms: Public domain | W3C validator |