Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodeq02 Structured version   Visualization version   GIF version

Theorem fprodeq02 29900
 Description: If one of the factors is zero the product is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
fprodeq02.1 (𝑘 = 𝐾𝐵 = 𝐶)
fprodeq02.a (𝜑𝐴 ∈ Fin)
fprodeq02.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodeq02.k (𝜑𝐾𝐴)
fprodeq02.c (𝜑𝐶 = 0)
Assertion
Ref Expression
fprodeq02 (𝜑 → ∏𝑘𝐴 𝐵 = 0)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝐾   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodeq02
StepHypRef Expression
1 disjdif 4185 . . . 4 ({𝐾} ∩ (𝐴 ∖ {𝐾})) = ∅
21a1i 11 . . 3 (𝜑 → ({𝐾} ∩ (𝐴 ∖ {𝐾})) = ∅)
3 fprodeq02.k . . . . . 6 (𝜑𝐾𝐴)
43snssd 4486 . . . . 5 (𝜑 → {𝐾} ⊆ 𝐴)
5 undif 4194 . . . . 5 ({𝐾} ⊆ 𝐴 ↔ ({𝐾} ∪ (𝐴 ∖ {𝐾})) = 𝐴)
64, 5sylib 208 . . . 4 (𝜑 → ({𝐾} ∪ (𝐴 ∖ {𝐾})) = 𝐴)
76eqcomd 2767 . . 3 (𝜑𝐴 = ({𝐾} ∪ (𝐴 ∖ {𝐾})))
8 fprodeq02.a . . 3 (𝜑𝐴 ∈ Fin)
9 fprodeq02.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
102, 7, 8, 9fprodsplit 14916 . 2 (𝜑 → ∏𝑘𝐴 𝐵 = (∏𝑘 ∈ {𝐾}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵))
11 fprodeq02.c . . . . . 6 (𝜑𝐶 = 0)
12 0cnd 10246 . . . . . 6 (𝜑 → 0 ∈ ℂ)
1311, 12eqeltrd 2840 . . . . 5 (𝜑𝐶 ∈ ℂ)
14 fprodeq02.1 . . . . . 6 (𝑘 = 𝐾𝐵 = 𝐶)
1514prodsn 14912 . . . . 5 ((𝐾𝐴𝐶 ∈ ℂ) → ∏𝑘 ∈ {𝐾}𝐵 = 𝐶)
163, 13, 15syl2anc 696 . . . 4 (𝜑 → ∏𝑘 ∈ {𝐾}𝐵 = 𝐶)
1716, 11eqtrd 2795 . . 3 (𝜑 → ∏𝑘 ∈ {𝐾}𝐵 = 0)
1817oveq1d 6830 . 2 (𝜑 → (∏𝑘 ∈ {𝐾}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵) = (0 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵))
19 diffi 8360 . . . . 5 (𝐴 ∈ Fin → (𝐴 ∖ {𝐾}) ∈ Fin)
208, 19syl 17 . . . 4 (𝜑 → (𝐴 ∖ {𝐾}) ∈ Fin)
21 difssd 3882 . . . . . 6 (𝜑 → (𝐴 ∖ {𝐾}) ⊆ 𝐴)
2221sselda 3745 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐾})) → 𝑘𝐴)
2322, 9syldan 488 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐾})) → 𝐵 ∈ ℂ)
2420, 23fprodcl 14902 . . 3 (𝜑 → ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵 ∈ ℂ)
2524mul02d 10447 . 2 (𝜑 → (0 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵) = 0)
2610, 18, 253eqtrd 2799 1 (𝜑 → ∏𝑘𝐴 𝐵 = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2140   ∖ cdif 3713   ∪ cun 3714   ∩ cin 3715   ⊆ wss 3716  ∅c0 4059  {csn 4322  (class class class)co 6815  Fincfn 8124  ℂcc 10147  0cc0 10149   · cmul 10154  ∏cprod 14855 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-prod 14856 This theorem is referenced by:  fprodex01  29902
 Copyright terms: Public domain W3C validator