Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcn Structured version   Visualization version   GIF version

Theorem fprodcn 40335
Description: A finite product of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodcn.d 𝑘𝜑
fprodcn.k 𝐾 = (TopOpen‘ℂfld)
fprodcn.j (𝜑𝐽 ∈ (TopOn‘𝑋))
fprodcn.a (𝜑𝐴 ∈ Fin)
fprodcn.b ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fprodcn (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝐴,𝑘,𝑥   𝑘,𝐽   𝑘,𝐾   𝑘,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem fprodcn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 14838 . . . 4 (𝑦 = ∅ → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21mpteq2dv 4897 . . 3 (𝑦 = ∅ → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵))
32eleq1d 2824 . 2 (𝑦 = ∅ → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
4 prodeq1 14838 . . . 4 (𝑦 = 𝑧 → ∏𝑘𝑦 𝐵 = ∏𝑘𝑧 𝐵)
54mpteq2dv 4897 . . 3 (𝑦 = 𝑧 → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵))
65eleq1d 2824 . 2 (𝑦 = 𝑧 → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)))
7 prodeq1 14838 . . . 4 (𝑦 = (𝑧 ∪ {𝑤}) → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵)
87mpteq2dv 4897 . . 3 (𝑦 = (𝑧 ∪ {𝑤}) → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵))
98eleq1d 2824 . 2 (𝑦 = (𝑧 ∪ {𝑤}) → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) ∈ (𝐽 Cn 𝐾)))
10 prodeq1 14838 . . . 4 (𝑦 = 𝐴 → ∏𝑘𝑦 𝐵 = ∏𝑘𝐴 𝐵)
1110mpteq2dv 4897 . . 3 (𝑦 = 𝐴 → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵))
1211eleq1d 2824 . 2 (𝑦 = 𝐴 → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
13 prod0 14872 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
1413mpteq2i 4893 . . . . 5 (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 1)
15 eqidd 2761 . . . . . 6 (𝑥 = 𝑦 → 1 = 1)
1615cbvmptv 4902 . . . . 5 (𝑥𝑋 ↦ 1) = (𝑦𝑋 ↦ 1)
1714, 16eqtri 2782 . . . 4 (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) = (𝑦𝑋 ↦ 1)
1817a1i 11 . . 3 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) = (𝑦𝑋 ↦ 1))
19 fprodcn.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
20 fprodcn.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
2120cnfldtopon 22787 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
2221a1i 11 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
23 1cnd 10248 . . . 4 (𝜑 → 1 ∈ ℂ)
2419, 22, 23cnmptc 21667 . . 3 (𝜑 → (𝑦𝑋 ↦ 1) ∈ (𝐽 Cn 𝐾))
2518, 24eqeltrd 2839 . 2 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
26 nfcv 2902 . . . . . 6 𝑦𝑘 ∈ (𝑧 ∪ {𝑤})𝐵
27 nfcv 2902 . . . . . . 7 𝑥(𝑧 ∪ {𝑤})
28 nfcsb1v 3690 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
2927, 28nfcprod 14840 . . . . . 6 𝑥𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵
30 csbeq1a 3683 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
3130prodeq2ad 40327 . . . . . 6 (𝑥 = 𝑦 → ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵 = ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵)
3226, 29, 31cbvmpt 4901 . . . . 5 (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) = (𝑦𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵)
3332a1i 11 . . . 4 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) = (𝑦𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵))
34 fprodcn.d . . . . . . 7 𝑘𝜑
35 nfv 1992 . . . . . . 7 𝑘(𝑧𝐴𝑤 ∈ (𝐴𝑧))
3634, 35nfan 1977 . . . . . 6 𝑘(𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧)))
37 nfcv 2902 . . . . . . . 8 𝑘𝑋
38 nfcv 2902 . . . . . . . . 9 𝑘𝑧
3938nfcprod1 14839 . . . . . . . 8 𝑘𝑘𝑧 𝐵
4037, 39nfmpt 4898 . . . . . . 7 𝑘(𝑥𝑋 ↦ ∏𝑘𝑧 𝐵)
41 nfcv 2902 . . . . . . 7 𝑘(𝐽 Cn 𝐾)
4240, 41nfel 2915 . . . . . 6 𝑘(𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)
4336, 42nfan 1977 . . . . 5 𝑘((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾))
4419ad2antrr 764 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
45 fprodcn.a . . . . . 6 (𝜑𝐴 ∈ Fin)
4645ad2antrr 764 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐴 ∈ Fin)
47 nfcv 2902 . . . . . . . . . 10 𝑦𝐵
4847, 28, 30cbvmpt 4901 . . . . . . . . 9 (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵)
4948eqcomi 2769 . . . . . . . 8 (𝑦𝑋𝑦 / 𝑥𝐵) = (𝑥𝑋𝐵)
5049a1i 11 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑦𝑋𝑦 / 𝑥𝐵) = (𝑥𝑋𝐵))
51 fprodcn.b . . . . . . 7 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
5250, 51eqeltrd 2839 . . . . . 6 ((𝜑𝑘𝐴) → (𝑦𝑋𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
5352ad4ant14 1209 . . . . 5 ((((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) ∧ 𝑘𝐴) → (𝑦𝑋𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
54 simplrl 819 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑧𝐴)
55 simplrr 820 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑤 ∈ (𝐴𝑧))
56 nfcv 2902 . . . . . . . . 9 𝑦𝑘𝑧 𝐵
57 nfcv 2902 . . . . . . . . . 10 𝑥𝑧
5857, 28nfcprod 14840 . . . . . . . . 9 𝑥𝑘𝑧 𝑦 / 𝑥𝐵
5930prodeq2sdv 14853 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑘𝑧 𝐵 = ∏𝑘𝑧 𝑦 / 𝑥𝐵)
6056, 58, 59cbvmpt 4901 . . . . . . . 8 (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) = (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵)
6160eleq1i 2830 . . . . . . 7 ((𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6261biimpi 206 . . . . . 6 ((𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6362adantl 473 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6443, 20, 44, 46, 53, 54, 55, 63fprodcnlem 40334 . . . 4 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑦𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6533, 64eqeltrd 2839 . . 3 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) ∈ (𝐽 Cn 𝐾))
6665ex 449 . 2 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → ((𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) ∈ (𝐽 Cn 𝐾)))
673, 6, 9, 12, 25, 66, 45findcard2d 8367 1 (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wnf 1857  wcel 2139  csb 3674  cdif 3712  cun 3713  wss 3715  c0 4058  {csn 4321  cmpt 4881  cfv 6049  (class class class)co 6813  Fincfn 8121  cc 10126  1c1 10129  cprod 14834  TopOpenctopn 16284  fldccnfld 19948  TopOnctopon 20917   Cn ccn 21230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-prod 14835  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cn 21233  df-cnp 21234  df-tx 21567  df-hmeo 21760  df-xms 22326  df-ms 22327  df-tms 22328
This theorem is referenced by:  fprodsub2cncf  40622  fprodadd2cncf  40623
  Copyright terms: Public domain W3C validator