![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodaddrecnncnvlem | Structured version Visualization version GIF version |
Description: The sequence 𝑆 of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fprodaddrecnncnvlem.k | ⊢ Ⅎ𝑘𝜑 |
fprodaddrecnncnvlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodaddrecnncnvlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fprodaddrecnncnvlem.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
fprodaddrecnncnvlem.f | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) |
fprodaddrecnncnvlem.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
Ref | Expression |
---|---|
fprodaddrecnncnvlem | ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 11916 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 11600 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | fprodaddrecnncnvlem.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
4 | fprodaddrecnncnvlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | fprodaddrecnncnvlem.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
6 | fprodaddrecnncnvlem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) | |
7 | 3, 4, 5, 6 | fprodadd2cncf 40623 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
8 | 1rp 12029 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ+) |
10 | nnrp 12035 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+) | |
11 | 9, 10 | rpdivcld 12082 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+) |
12 | 11 | rpcnd 12067 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℂ) |
13 | 12 | adantl 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℂ) |
14 | fprodaddrecnncnvlem.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | |
15 | 13, 14 | fmptd 6548 | . . 3 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
16 | 1cnd 10248 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
17 | divcnv 14784 | . . . . 5 ⊢ (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) |
19 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))) |
20 | 19 | breq1d 4814 | . . . 4 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)) |
21 | 18, 20 | mpbird 247 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) |
22 | 0cnd 10225 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
23 | 1, 2, 7, 15, 21, 22 | climcncf 22904 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘0)) |
24 | nfv 1992 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝑥 ∈ ℂ | |
25 | 3, 24 | nfan 1977 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ ℂ) |
26 | 4 | adantr 472 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ Fin) |
27 | 5 | adantlr 753 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
28 | simplr 809 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
29 | 27, 28 | addcld 10251 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝑥) ∈ ℂ) |
30 | 25, 26, 29 | fprodclf 14922 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) ∈ ℂ) |
31 | 30, 6 | fmptd 6548 | . . . . 5 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
32 | fcompt 6563 | . . . . 5 ⊢ ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) | |
33 | 31, 15, 32 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
34 | fprodaddrecnncnvlem.s | . . . . . 6 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) | |
35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)))) |
36 | id 22 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
37 | 14 | fvmpt2 6453 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℕ ∧ (1 / 𝑛) ∈ ℂ) → (𝐺‘𝑛) = (1 / 𝑛)) |
38 | 36, 12, 37 | syl2anc 696 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = (1 / 𝑛)) |
39 | 38 | fveq2d 6356 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
40 | 39 | adantl 473 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
41 | 6 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥))) |
42 | oveq2 6821 | . . . . . . . . . 10 ⊢ (𝑥 = (1 / 𝑛) → (𝐵 + 𝑥) = (𝐵 + (1 / 𝑛))) | |
43 | 42 | prodeq2ad 40327 | . . . . . . . . 9 ⊢ (𝑥 = (1 / 𝑛) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) = ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
44 | 43 | adantl 473 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 = (1 / 𝑛)) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) = ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
45 | prodex 14836 | . . . . . . . . 9 ⊢ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)) ∈ V | |
46 | 45 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)) ∈ V) |
47 | 41, 44, 13, 46 | fvmptd 6450 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(1 / 𝑛)) = ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
48 | 40, 47 | eqtr2d 2795 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)) = (𝐹‘(𝐺‘𝑛))) |
49 | 48 | mpteq2dva 4896 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
50 | 35, 49 | eqtrd 2794 | . . . 4 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
51 | 33, 50 | eqtr4d 2797 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = 𝑆) |
52 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥))) |
53 | nfv 1992 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑥 = 0 | |
54 | 3, 53 | nfan 1977 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 = 0) |
55 | oveq2 6821 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝐵 + 𝑥) = (𝐵 + 0)) | |
56 | 55 | ad2antlr 765 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝑥) = (𝐵 + 0)) |
57 | 5 | addid1d 10428 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 + 0) = 𝐵) |
58 | 57 | adantlr 753 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 0) = 𝐵) |
59 | 56, 58 | eqtrd 2794 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝑥) = 𝐵) |
60 | 59 | ex 449 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑘 ∈ 𝐴 → (𝐵 + 𝑥) = 𝐵)) |
61 | 54, 60 | ralrimi 3095 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∀𝑘 ∈ 𝐴 (𝐵 + 𝑥) = 𝐵) |
62 | 61 | prodeq2d 14851 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) = ∏𝑘 ∈ 𝐴 𝐵) |
63 | prodex 14836 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V | |
64 | 63 | a1i 11 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ V) |
65 | 52, 62, 22, 64 | fvmptd 6450 | . . 3 ⊢ (𝜑 → (𝐹‘0) = ∏𝑘 ∈ 𝐴 𝐵) |
66 | 51, 65 | breq12d 4817 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ⇝ (𝐹‘0) ↔ 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵)) |
67 | 23, 66 | mpbid 222 | 1 ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2139 Vcvv 3340 class class class wbr 4804 ↦ cmpt 4881 ∘ ccom 5270 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 Fincfn 8121 ℂcc 10126 0cc0 10128 1c1 10129 + caddc 10131 / cdiv 10876 ℕcn 11212 ℝ+crp 12025 ⇝ cli 14414 ∏cprod 14834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-icc 12375 df-fz 12520 df-fzo 12660 df-fl 12787 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-rlim 14419 df-prod 14835 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-rest 16285 df-topn 16286 df-0g 16304 df-gsum 16305 df-topgen 16306 df-pt 16307 df-prds 16310 df-xrs 16364 df-qtop 16369 df-imas 16370 df-xps 16372 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-cnfld 19949 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cn 21233 df-cnp 21234 df-tx 21567 df-hmeo 21760 df-xms 22326 df-ms 22327 df-tms 22328 df-cncf 22882 |
This theorem is referenced by: fprodaddrecnncnv 40627 |
Copyright terms: Public domain | W3C validator |