MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr2g Structured version   Visualization version   GIF version

Theorem fpr2g 6516
Description: A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Assertion
Ref Expression
fpr2g ((𝐴𝑉𝐵𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))

Proof of Theorem fpr2g
StepHypRef Expression
1 simpr 476 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹:{𝐴, 𝐵}⟶𝐶)
2 prid1g 4327 . . . . 5 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
32ad2antrr 762 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐴 ∈ {𝐴, 𝐵})
41, 3ffvelrnd 6400 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹𝐴) ∈ 𝐶)
5 prid2g 4328 . . . . 5 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
65ad2antlr 763 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐵 ∈ {𝐴, 𝐵})
71, 6ffvelrnd 6400 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹𝐵) ∈ 𝐶)
8 ffn 6083 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝐶𝐹 Fn {𝐴, 𝐵})
98adantl 481 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 Fn {𝐴, 𝐵})
10 fnpr2g 6515 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1110adantr 480 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
129, 11mpbid 222 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
134, 7, 123jca 1261 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1410biimpar 501 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}) → 𝐹 Fn {𝐴, 𝐵})
15143ad2antr3 1248 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 Fn {𝐴, 𝐵})
16 simpr3 1089 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
172ad2antrr 762 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐴 ∈ {𝐴, 𝐵})
18 simpr1 1087 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → (𝐹𝐴) ∈ 𝐶)
19 opelxpi 5182 . . . . . . 7 ((𝐴 ∈ {𝐴, 𝐵} ∧ (𝐹𝐴) ∈ 𝐶) → ⟨𝐴, (𝐹𝐴)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
2017, 18, 19syl2anc 694 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → ⟨𝐴, (𝐹𝐴)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
215ad2antlr 763 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐵 ∈ {𝐴, 𝐵})
22 simpr2 1088 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → (𝐹𝐵) ∈ 𝐶)
23 opelxpi 5182 . . . . . . 7 ((𝐵 ∈ {𝐴, 𝐵} ∧ (𝐹𝐵) ∈ 𝐶) → ⟨𝐵, (𝐹𝐵)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
2421, 22, 23syl2anc 694 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → ⟨𝐵, (𝐹𝐵)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
2520, 24jca 553 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → (⟨𝐴, (𝐹𝐴)⟩ ∈ ({𝐴, 𝐵} × 𝐶) ∧ ⟨𝐵, (𝐹𝐵)⟩ ∈ ({𝐴, 𝐵} × 𝐶)))
26 opex 4962 . . . . . 6 𝐴, (𝐹𝐴)⟩ ∈ V
27 opex 4962 . . . . . 6 𝐵, (𝐹𝐵)⟩ ∈ V
2826, 27prss 4383 . . . . 5 ((⟨𝐴, (𝐹𝐴)⟩ ∈ ({𝐴, 𝐵} × 𝐶) ∧ ⟨𝐵, (𝐹𝐵)⟩ ∈ ({𝐴, 𝐵} × 𝐶)) ↔ {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ⊆ ({𝐴, 𝐵} × 𝐶))
2925, 28sylib 208 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ⊆ ({𝐴, 𝐵} × 𝐶))
3016, 29eqsstrd 3672 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶))
31 dff2 6411 . . 3 (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ (𝐹 Fn {𝐴, 𝐵} ∧ 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶)))
3215, 30, 31sylanbrc 699 . 2 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹:{𝐴, 𝐵}⟶𝐶)
3313, 32impbida 895 1 ((𝐴𝑉𝐵𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wss 3607  {cpr 4212  cop 4216   × cxp 5141   Fn wfn 5921  wf 5922  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934
This theorem is referenced by:  f1prex  6579  uhgrwkspthlem2  26706
  Copyright terms: Public domain W3C validator