Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperdvper Structured version   Visualization version   GIF version

Theorem fperdvper 40451
Description: The derivative of a periodic function is periodic. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperdvper.f (𝜑𝐹:ℝ⟶ℂ)
fperdvper.t (𝜑𝑇 ∈ ℝ)
fperdvper.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fperdvper.g 𝐺 = (ℝ D 𝐹)
Assertion
Ref Expression
fperdvper ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem fperdvper
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvbsss 23711 . . . . . . . 8 dom (ℝ D 𝐹) ⊆ ℝ
2 id 22 . . . . . . . . 9 (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐺)
3 fperdvper.g . . . . . . . . . 10 𝐺 = (ℝ D 𝐹)
43dmeqi 5357 . . . . . . . . 9 dom 𝐺 = dom (ℝ D 𝐹)
52, 4syl6eleq 2740 . . . . . . . 8 (𝑥 ∈ dom 𝐺𝑥 ∈ dom (ℝ D 𝐹))
61, 5sseldi 3634 . . . . . . 7 (𝑥 ∈ dom 𝐺𝑥 ∈ ℝ)
76adantl 481 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
8 fperdvper.t . . . . . . 7 (𝜑𝑇 ∈ ℝ)
98adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → 𝑇 ∈ ℝ)
107, 9readdcld 10107 . . . . 5 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
11 reopn 39815 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
12 retop 22612 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
13 ssid 3657 . . . . . . . . 9 ℝ ⊆ ℝ
1413a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → ℝ ⊆ ℝ)
15 uniretop 22613 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1615isopn3 20918 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ℝ ⊆ ℝ) → (ℝ ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘ℝ) = ℝ))
1712, 14, 16sylancr 696 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐺) → (ℝ ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘ℝ) = ℝ))
1811, 17mpbii 223 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → ((int‘(topGen‘ran (,)))‘ℝ) = ℝ)
1918eqcomd 2657 . . . . 5 ((𝜑𝑥 ∈ dom 𝐺) → ℝ = ((int‘(topGen‘ran (,)))‘ℝ))
2010, 19eleqtrd 2732 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ((int‘(topGen‘ran (,)))‘ℝ))
215adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom (ℝ D 𝐹))
223fveq1i 6230 . . . . . . . . . 10 (𝐺𝑥) = ((ℝ D 𝐹)‘𝑥)
2322eqcomi 2660 . . . . . . . . 9 ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥)
2423a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥))
25 dvf 23716 . . . . . . . . . . . 12 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
26 ffun 6086 . . . . . . . . . . . 12 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
2725, 26ax-mp 5 . . . . . . . . . . 11 Fun (ℝ D 𝐹)
2827a1i 11 . . . . . . . . . 10 (𝜑 → Fun (ℝ D 𝐹))
29 funbrfv2b 6279 . . . . . . . . . 10 (Fun (ℝ D 𝐹) → (𝑥(ℝ D 𝐹)(𝐺𝑥) ↔ (𝑥 ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥))))
3028, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑥(ℝ D 𝐹)(𝐺𝑥) ↔ (𝑥 ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥))))
3130adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥(ℝ D 𝐹)(𝐺𝑥) ↔ (𝑥 ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥))))
3221, 24, 31mpbir2and 977 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥(ℝ D 𝐹)(𝐺𝑥))
33 eqid 2651 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3433tgioo2 22653 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
35 eqid 2651 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))
36 ax-resscn 10031 . . . . . . . . 9 ℝ ⊆ ℂ
3736a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → ℝ ⊆ ℂ)
38 fperdvper.f . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℂ)
3938adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → 𝐹:ℝ⟶ℂ)
4034, 33, 35, 37, 39, 14eldv 23707 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥(ℝ D 𝐹)(𝐺𝑥) ↔ (𝑥 ∈ ((int‘(topGen‘ran (,)))‘ℝ) ∧ (𝐺𝑥) ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥))))
4132, 40mpbid 222 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘ℝ) ∧ (𝐺𝑥) ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥)))
4241simprd 478 . . . . 5 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥))
43 eqidd 2652 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) = (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))))
44 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑑 → (𝐹𝑦) = (𝐹𝑑))
4544oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑑 → ((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) = ((𝐹𝑑) − (𝐹‘(𝑥 + 𝑇))))
46 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑑 → (𝑦 − (𝑥 + 𝑇)) = (𝑑 − (𝑥 + 𝑇)))
4745, 46oveq12d 6708 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑑 → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹𝑑) − (𝐹‘(𝑥 + 𝑇))) / (𝑑 − (𝑥 + 𝑇))))
48 eldifi 3765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) → 𝑑 ∈ ℝ)
4948recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) → 𝑑 ∈ ℂ)
5049adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ ℂ)
518recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑇 ∈ ℂ)
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑇 ∈ ℂ)
5350, 52npcand 10434 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) + 𝑇) = 𝑑)
5453eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 = ((𝑑𝑇) + 𝑇))
5554fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹𝑑) = (𝐹‘((𝑑𝑇) + 𝑇)))
56 ovex 6718 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑𝑇) ∈ V
5748adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ ℝ)
588adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑇 ∈ ℝ)
5957, 58resubcld 10496 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ∈ ℝ)
6059ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) → (𝑑𝑇) ∈ ℝ))
6160imdistani 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝜑 ∧ (𝑑𝑇) ∈ ℝ))
62 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝑑𝑇) → (𝑥 ∈ ℝ ↔ (𝑑𝑇) ∈ ℝ))
6362anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = (𝑑𝑇) → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑 ∧ (𝑑𝑇) ∈ ℝ)))
64 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = (𝑑𝑇) → (𝑥 + 𝑇) = ((𝑑𝑇) + 𝑇))
6564fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝑑𝑇) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘((𝑑𝑇) + 𝑇)))
66 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝑑𝑇) → (𝐹𝑥) = (𝐹‘(𝑑𝑇)))
6765, 66eqeq12d 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = (𝑑𝑇) → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘((𝑑𝑇) + 𝑇)) = (𝐹‘(𝑑𝑇))))
6863, 67imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑑𝑇) → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑 ∧ (𝑑𝑇) ∈ ℝ) → (𝐹‘((𝑑𝑇) + 𝑇)) = (𝐹‘(𝑑𝑇)))))
69 fperdvper.fper . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
7068, 69vtoclg 3297 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑𝑇) ∈ V → ((𝜑 ∧ (𝑑𝑇) ∈ ℝ) → (𝐹‘((𝑑𝑇) + 𝑇)) = (𝐹‘(𝑑𝑇))))
7156, 61, 70mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹‘((𝑑𝑇) + 𝑇)) = (𝐹‘(𝑑𝑇)))
7255, 71eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹𝑑) = (𝐹‘(𝑑𝑇)))
7372adantlr 751 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹𝑑) = (𝐹‘(𝑑𝑇)))
74 simpll 805 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝜑)
756ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑥 ∈ ℝ)
7674, 75, 69syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
7773, 76oveq12d 6708 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝐹𝑑) − (𝐹‘(𝑥 + 𝑇))) = ((𝐹‘(𝑑𝑇)) − (𝐹𝑥)))
7849adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ ℂ)
7974, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑇 ∈ ℂ)
807recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℂ)
8180adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑥 ∈ ℂ)
8278, 79, 81subsub4d 10461 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) − 𝑥) = (𝑑 − (𝑇 + 𝑥)))
8379, 81addcomd 10276 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑇 + 𝑥) = (𝑥 + 𝑇))
8483oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑 − (𝑇 + 𝑥)) = (𝑑 − (𝑥 + 𝑇)))
8582, 84eqtr2d 2686 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑 − (𝑥 + 𝑇)) = ((𝑑𝑇) − 𝑥))
8677, 85oveq12d 6708 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝐹𝑑) − (𝐹‘(𝑥 + 𝑇))) / (𝑑 − (𝑥 + 𝑇))) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
8747, 86sylan9eqr 2707 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = 𝑑) → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
88 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}))
8938adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝐹:ℝ⟶ℂ)
9089, 59ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹‘(𝑑𝑇)) ∈ ℂ)
9190adantlr 751 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹‘(𝑑𝑇)) ∈ ℂ)
9239, 7ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ dom 𝐺) → (𝐹𝑥) ∈ ℂ)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹𝑥) ∈ ℂ)
9491, 93subcld 10430 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) ∈ ℂ)
9578, 79subcld 10430 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ∈ ℂ)
9695, 81subcld 10430 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) − 𝑥) ∈ ℂ)
97 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → (𝑑𝑇) = 𝑥)
9849ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑑 ∈ ℂ)
9979adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑇 ∈ ℂ)
10081adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑥 ∈ ℂ)
10198, 99, 100subadd2d 10449 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → ((𝑑𝑇) = 𝑥 ↔ (𝑥 + 𝑇) = 𝑑))
10297, 101mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → (𝑥 + 𝑇) = 𝑑)
103102eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑑 = (𝑥 + 𝑇))
104 eldifsni 4353 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) → 𝑑 ≠ (𝑥 + 𝑇))
105104ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑑 ≠ (𝑥 + 𝑇))
106105neneqd 2828 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → ¬ 𝑑 = (𝑥 + 𝑇))
107103, 106pm2.65da 599 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ¬ (𝑑𝑇) = 𝑥)
108107neqned 2830 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ≠ 𝑥)
10995, 81, 108subne0d 10439 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) − 𝑥) ≠ 0)
11094, 96, 109divcld 10839 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) ∈ ℂ)
11143, 87, 88, 110fvmptd 6327 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
112111oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤) = ((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤))
113112fveq2d 6233 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) = (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)))
114113adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏)) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) = (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)))
115114adantllr 755 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏)) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) = (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)))
116 simpllr 815 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎))
11748ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → 𝑑 ∈ ℝ)
1188ad4antr 769 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → 𝑇 ∈ ℝ)
119117, 118resubcld 10496 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (𝑑𝑇) ∈ ℝ)
120 elsni 4227 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑑𝑇) ∈ {𝑥} → (𝑑𝑇) = 𝑥)
121107, 120nsyl 135 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ¬ (𝑑𝑇) ∈ {𝑥})
122121adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ¬ (𝑑𝑇) ∈ {𝑥})
123122adantllr 755 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ¬ (𝑑𝑇) ∈ {𝑥})
124119, 123eldifd 3618 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (𝑑𝑇) ∈ (ℝ ∖ {𝑥}))
125 neeq1 2885 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑑𝑇) → (𝑐𝑥 ↔ (𝑑𝑇) ≠ 𝑥))
126 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑑𝑇) → (𝑐𝑥) = ((𝑑𝑇) − 𝑥))
127126fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = (𝑑𝑇) → (abs‘(𝑐𝑥)) = (abs‘((𝑑𝑇) − 𝑥)))
128127breq1d 4695 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑑𝑇) → ((abs‘(𝑐𝑥)) < 𝑏 ↔ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏))
129125, 128anbi12d 747 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑑𝑇) → ((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) ↔ ((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏)))
130 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑑𝑇) → ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) = ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)))
131130oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = (𝑑𝑇) → (((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤) = (((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤))
132131fveq2d 6233 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑑𝑇) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) = (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)))
133132breq1d 4695 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑑𝑇) → ((abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎 ↔ (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎))
134129, 133imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝑑𝑇) → (((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎) ↔ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)))
135134rspccva 3339 . . . . . . . . . . . . . . . . . 18 ((∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎) ∧ (𝑑𝑇) ∈ (ℝ ∖ {𝑥})) → (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎))
136116, 124, 135syl2anc 694 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎))
137 eqidd 2652 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))))
138 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → 𝑦 = (𝑑𝑇))
139138fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → (𝐹𝑦) = (𝐹‘(𝑑𝑇)))
140139oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹‘(𝑑𝑇)) − (𝐹𝑥)))
141138oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → (𝑦𝑥) = ((𝑑𝑇) − 𝑥))
142140, 141oveq12d 6708 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
14348adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ ℝ)
14474, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑇 ∈ ℝ)
145143, 144resubcld 10496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ∈ ℝ)
146145, 121eldifd 3618 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ∈ (ℝ ∖ {𝑥}))
147137, 142, 146, 110fvmptd 6327 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
148147eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) = ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)))
149148ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) = ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)))
150149oveq1d 6705 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → ((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤) = (((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤))
151150fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) = (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)))
152108adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (𝑑𝑇) ≠ 𝑥)
15385eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) − 𝑥) = (𝑑 − (𝑥 + 𝑇)))
154153adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ((𝑑𝑇) − 𝑥) = (𝑑 − (𝑥 + 𝑇)))
155154fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘((𝑑𝑇) − 𝑥)) = (abs‘(𝑑 − (𝑥 + 𝑇))))
156 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏)
157155, 156eqbrtrd 4707 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘((𝑑𝑇) − 𝑥)) < 𝑏)
158152, 157jca 553 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏))
159158adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → ((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏))
160 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎))
161159, 160mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)
162151, 161eqbrtrd 4707 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎)
163162ex 449 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ((((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎))
164163adantllr 755 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ((((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎))
165136, 164mpd 15 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎)
166165adantrl 752 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏)) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎)
167115, 166eqbrtrd 4707 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏)) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)
168167ex 449 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))
169168ralrimiva 2995 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) → ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))
170 eqidd 2652 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (ℝ ∖ {𝑥}) → (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))))
171 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
172171oveq1d 6705 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑐 → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑐) − (𝐹𝑥)))
173 oveq1 6697 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑐 → (𝑦𝑥) = (𝑐𝑥))
174172, 173oveq12d 6708 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑐 → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) = (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)))
175174adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ (ℝ ∖ {𝑥}) ∧ 𝑦 = 𝑐) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) = (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)))
176 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (ℝ ∖ {𝑥}) → 𝑐 ∈ (ℝ ∖ {𝑥}))
177 ovexd 6720 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (ℝ ∖ {𝑥}) → (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) ∈ V)
178170, 175, 176, 177fvmptd 6327 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ (ℝ ∖ {𝑥}) → ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) = (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)))
179178oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ (ℝ ∖ {𝑥}) → (((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤) = ((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤))
180179fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (ℝ ∖ {𝑥}) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) = (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)))
181180ad2antlr 763 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏)) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) = (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)))
182 simpll 805 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝜑)
183 eldifi 3765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (ℝ ∖ {𝑥}) → 𝑐 ∈ ℝ)
184183adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑐 ∈ ℝ)
185 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑐 → (𝑥 ∈ ℝ ↔ 𝑐 ∈ ℝ))
186185anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑐 → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑𝑐 ∈ ℝ)))
187 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 𝑐 → (𝑥 + 𝑇) = (𝑐 + 𝑇))
188187fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑐 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑐 + 𝑇)))
189 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
190188, 189eqeq12d 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑐 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑐 + 𝑇)) = (𝐹𝑐)))
191186, 190imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑐 → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑐 ∈ ℝ) → (𝐹‘(𝑐 + 𝑇)) = (𝐹𝑐))))
192191, 69chvarv 2299 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑐 ∈ ℝ) → (𝐹‘(𝑐 + 𝑇)) = (𝐹𝑐))
193192eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑐 ∈ ℝ) → (𝐹𝑐) = (𝐹‘(𝑐 + 𝑇)))
194182, 184, 193syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝐹𝑐) = (𝐹‘(𝑐 + 𝑇)))
1956ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑥 ∈ ℝ)
196182, 195, 69syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
197196eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝐹𝑥) = (𝐹‘(𝑥 + 𝑇)))
198194, 197oveq12d 6708 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ((𝐹𝑐) − (𝐹𝑥)) = ((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))))
199184recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑐 ∈ ℂ)
20080adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑥 ∈ ℂ)
201182, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑇 ∈ ℂ)
202199, 200, 201pnpcan2d 10468 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ((𝑐 + 𝑇) − (𝑥 + 𝑇)) = (𝑐𝑥))
203202eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑐𝑥) = ((𝑐 + 𝑇) − (𝑥 + 𝑇)))
204198, 203oveq12d 6708 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) = (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))))
205204oveq1d 6705 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤) = ((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤))
206205fveq2d 6233 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)) = (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)))
207206adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)) = (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)))
208207adantllr 755 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)) = (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)))
209 simpllr 815 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))
210183ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑐 ∈ ℝ)
2118ad4antr 769 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑇 ∈ ℝ)
212210, 211readdcld 10107 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (𝑐 + 𝑇) ∈ ℝ)
213 eldifsni 4353 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (ℝ ∖ {𝑥}) → 𝑐𝑥)
214213adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑐𝑥)
215199, 200, 201, 214addneintr2d 10282 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑐 + 𝑇) ≠ (𝑥 + 𝑇))
216215adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (𝑐 + 𝑇) ≠ (𝑥 + 𝑇))
217216adantllr 755 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (𝑐 + 𝑇) ≠ (𝑥 + 𝑇))
218 nelsn 4245 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) → ¬ (𝑐 + 𝑇) ∈ {(𝑥 + 𝑇)})
219217, 218syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ¬ (𝑐 + 𝑇) ∈ {(𝑥 + 𝑇)})
220212, 219eldifd 3618 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (𝑐 + 𝑇) ∈ (ℝ ∖ {(𝑥 + 𝑇)}))
221 neeq1 2885 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = (𝑐 + 𝑇) → (𝑑 ≠ (𝑥 + 𝑇) ↔ (𝑐 + 𝑇) ≠ (𝑥 + 𝑇)))
222 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = (𝑐 + 𝑇) → (𝑑 − (𝑥 + 𝑇)) = ((𝑐 + 𝑇) − (𝑥 + 𝑇)))
223222fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = (𝑐 + 𝑇) → (abs‘(𝑑 − (𝑥 + 𝑇))) = (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))))
224223breq1d 4695 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = (𝑐 + 𝑇) → ((abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏 ↔ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏))
225221, 224anbi12d 747 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = (𝑐 + 𝑇) → ((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ↔ ((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏)))
226 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = (𝑐 + 𝑇) → ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) = ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)))
227226oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = (𝑐 + 𝑇) → (((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤) = (((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤))
228227fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = (𝑐 + 𝑇) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) = (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)))
229228breq1d 4695 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = (𝑐 + 𝑇) → ((abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎 ↔ (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎))
230225, 229imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = (𝑐 + 𝑇) → (((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎) ↔ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)))
231230rspccva 3339 . . . . . . . . . . . . . . . . . . 19 ((∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎) ∧ (𝑐 + 𝑇) ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎))
232209, 220, 231syl2anc 694 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎))
233 eqidd 2652 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) = (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))))
234 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = (𝑐 + 𝑇) → (𝐹𝑦) = (𝐹‘(𝑐 + 𝑇)))
235234oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = (𝑐 + 𝑇) → ((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) = ((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))))
236 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = (𝑐 + 𝑇) → (𝑦 − (𝑥 + 𝑇)) = ((𝑐 + 𝑇) − (𝑥 + 𝑇)))
237235, 236oveq12d 6708 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = (𝑐 + 𝑇) → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))))
238237adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ 𝑦 = (𝑐 + 𝑇)) → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))))
239182, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑇 ∈ ℝ)
240184, 239readdcld 10107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑐 + 𝑇) ∈ ℝ)
241215, 218syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ¬ (𝑐 + 𝑇) ∈ {(𝑥 + 𝑇)})
242240, 241eldifd 3618 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑐 + 𝑇) ∈ (ℝ ∖ {(𝑥 + 𝑇)}))
243 ovexd 6720 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) ∈ V)
244233, 238, 242, 243fvmptd 6327 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) = (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))))
245244eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) = ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)))
246245ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) = ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)))
247246oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → ((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤) = (((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤))
248247fveq2d 6233 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) = (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)))
249183recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ∈ (ℝ ∖ {𝑥}) → 𝑐 ∈ ℂ)
250249ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑐 ∈ ℂ)
251200adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑥 ∈ ℂ)
252201adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑇 ∈ ℂ)
253250, 251, 252pnpcan2d 10468 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ((𝑐 + 𝑇) − (𝑥 + 𝑇)) = (𝑐𝑥))
254253fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) = (abs‘(𝑐𝑥)))
255 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(𝑐𝑥)) < 𝑏)
256254, 255eqbrtrd 4707 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏)
257216, 256jca 553 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏))
258257adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → ((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏))
259 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎))
260258, 259mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)
261248, 260eqbrtrd 4707 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) < 𝑎)
262261ex 449 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ((((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) < 𝑎))
263262adantllr 755 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ((((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) < 𝑎))
264232, 263mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) < 𝑎)
265208, 264eqbrtrd 4707 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)) < 𝑎)
266265adantrl 752 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏)) → (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)) < 𝑎)
267181, 266eqbrtrd 4707 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏)) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)
268267ex 449 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎))
269268ralrimiva 2995 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) → ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎))
270169, 269impbida 895 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐺) → (∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎) ↔ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)))
271270rexbidv 3081 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → (∃𝑏 ∈ ℝ+𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎) ↔ ∃𝑏 ∈ ℝ+𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)))
272271ralbidv 3015 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)))
273272anbi2d 740 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑤 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ↔ (𝑤 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))))
27439, 37, 7dvlem 23705 . . . . . . . . . 10 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑦 ∈ (ℝ ∖ {𝑥})) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ℂ)
275274, 35fmptd 6425 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))):(ℝ ∖ {𝑥})⟶ℂ)
27637ssdifssd 3781 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (ℝ ∖ {𝑥}) ⊆ ℂ)
277275, 276, 80ellimc3 23688 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → (𝑤 ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥) ↔ (𝑤 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎))))
27839, 37, 10dvlem 23705 . . . . . . . . . 10 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) ∈ ℂ)
279 eqid 2651 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) = (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))
280278, 279fmptd 6425 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))):(ℝ ∖ {(𝑥 + 𝑇)})⟶ℂ)
28137ssdifssd 3781 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (ℝ ∖ {(𝑥 + 𝑇)}) ⊆ ℂ)
28210recnd 10106 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℂ)
283280, 281, 282ellimc3 23688 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → (𝑤 ∈ ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)) ↔ (𝑤 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))))
284273, 277, 2833bitr4d 300 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐺) → (𝑤 ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥) ↔ 𝑤 ∈ ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇))))
285284eqrdv 2649 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥) = ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))
286 fveq2 6229 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
287286oveq1d 6705 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) = ((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))))
288 oveq1 6697 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 − (𝑥 + 𝑇)) = (𝑧 − (𝑥 + 𝑇)))
289287, 288oveq12d 6708 . . . . . . . 8 (𝑦 = 𝑧 → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇))))
290289cbvmptv 4783 . . . . . . 7 (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) = (𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇))))
291290oveq1i 6700 . . . . . 6 ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)) = ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇))
292285, 291syl6eq 2701 . . . . 5 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥) = ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))
29342, 292eleqtrd 2732 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))
294 eqid 2651 . . . . . 6 (𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) = (𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇))))
29536a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
29613a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
29734, 33, 294, 295, 38, 296eldv 23707 . . . . 5 (𝜑 → ((𝑥 + 𝑇)(ℝ D 𝐹)(𝐺𝑥) ↔ ((𝑥 + 𝑇) ∈ ((int‘(topGen‘ran (,)))‘ℝ) ∧ (𝐺𝑥) ∈ ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))))
298297adantr 480 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇)(ℝ D 𝐹)(𝐺𝑥) ↔ ((𝑥 + 𝑇) ∈ ((int‘(topGen‘ran (,)))‘ℝ) ∧ (𝐺𝑥) ∈ ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))))
29920, 293, 298mpbir2and 977 . . 3 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇)(ℝ D 𝐹)(𝐺𝑥))
3003a1i 11 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → 𝐺 = (ℝ D 𝐹))
301300breqd 4696 . . 3 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇)𝐺(𝐺𝑥) ↔ (𝑥 + 𝑇)(ℝ D 𝐹)(𝐺𝑥)))
302299, 301mpbird 247 . 2 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇)𝐺(𝐺𝑥))
3033a1i 11 . . . . . 6 (𝜑𝐺 = (ℝ D 𝐹))
304303funeqd 5948 . . . . 5 (𝜑 → (Fun 𝐺 ↔ Fun (ℝ D 𝐹)))
30528, 304mpbird 247 . . . 4 (𝜑 → Fun 𝐺)
306305adantr 480 . . 3 ((𝜑𝑥 ∈ dom 𝐺) → Fun 𝐺)
307 funbrfv2b 6279 . . 3 (Fun 𝐺 → ((𝑥 + 𝑇)𝐺(𝐺𝑥) ↔ ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))))
308306, 307syl 17 . 2 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇)𝐺(𝐺𝑥) ↔ ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))))
309302, 308mpbid 222 1 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  wss 3607  {csn 4210   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973   + caddc 9977   < clt 10112  cmin 10304   / cdiv 10722  +crp 11870  (,)cioo 12213  abscabs 14018  TopOpenctopn 16129  topGenctg 16145  fldccnfld 19794  Topctop 20746  intcnt 20869   lim climc 23671   D cdv 23672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cnp 21080  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-limc 23675  df-dv 23676
This theorem is referenced by:  fourierdlem94  40735  fourierdlem97  40738  fourierdlem113  40754
  Copyright terms: Public domain W3C validator