Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem3 Structured version   Visualization version   GIF version

Theorem fparlem3 7324
 Description: Lemma for fpar 7326. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem3 (𝐹 Fn 𝐴 → ((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) = 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem fparlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coiun 5683 . 2 ((1st ↾ (V × V)) ∘ 𝑥𝐴 (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))) = 𝑥𝐴 ((1st ↾ (V × V)) ∘ (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥})))
2 inss1 3866 . . . . 5 (dom 𝐹 ∩ ran (1st ↾ (V × V))) ⊆ dom 𝐹
3 fndm 6028 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
42, 3syl5sseq 3686 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹 ∩ ran (1st ↾ (V × V))) ⊆ 𝐴)
5 dfco2a 5673 . . . 4 ((dom 𝐹 ∩ ran (1st ↾ (V × V))) ⊆ 𝐴 → (𝐹 ∘ (1st ↾ (V × V))) = 𝑥𝐴 (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥})))
64, 5syl 17 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∘ (1st ↾ (V × V))) = 𝑥𝐴 (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥})))
76coeq2d 5317 . 2 (𝐹 Fn 𝐴 → ((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) = ((1st ↾ (V × V)) ∘ 𝑥𝐴 (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))))
8 inss1 3866 . . . . . . . . 9 (dom ({(𝐹𝑥)} × ({𝑥} × V)) ∩ ran (1st ↾ (V × V))) ⊆ dom ({(𝐹𝑥)} × ({𝑥} × V))
9 dmxpss 5600 . . . . . . . . 9 dom ({(𝐹𝑥)} × ({𝑥} × V)) ⊆ {(𝐹𝑥)}
108, 9sstri 3645 . . . . . . . 8 (dom ({(𝐹𝑥)} × ({𝑥} × V)) ∩ ran (1st ↾ (V × V))) ⊆ {(𝐹𝑥)}
11 dfco2a 5673 . . . . . . . 8 ((dom ({(𝐹𝑥)} × ({𝑥} × V)) ∩ ran (1st ↾ (V × V))) ⊆ {(𝐹𝑥)} → (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = 𝑦 ∈ {(𝐹𝑥)} (((1st ↾ (V × V)) “ {𝑦}) × (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦})))
1210, 11ax-mp 5 . . . . . . 7 (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = 𝑦 ∈ {(𝐹𝑥)} (((1st ↾ (V × V)) “ {𝑦}) × (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦}))
13 fvex 6239 . . . . . . . 8 (𝐹𝑥) ∈ V
14 fparlem1 7322 . . . . . . . . . 10 ((1st ↾ (V × V)) “ {𝑦}) = ({𝑦} × V)
15 sneq 4220 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) → {𝑦} = {(𝐹𝑥)})
1615xpeq1d 5172 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → ({𝑦} × V) = ({(𝐹𝑥)} × V))
1714, 16syl5eq 2697 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((1st ↾ (V × V)) “ {𝑦}) = ({(𝐹𝑥)} × V))
1815imaeq2d 5501 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦}) = (({(𝐹𝑥)} × ({𝑥} × V)) “ {(𝐹𝑥)}))
19 df-ima 5156 . . . . . . . . . . 11 (({(𝐹𝑥)} × ({𝑥} × V)) “ {(𝐹𝑥)}) = ran (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)})
20 ssid 3657 . . . . . . . . . . . . . 14 {(𝐹𝑥)} ⊆ {(𝐹𝑥)}
21 xpssres 5469 . . . . . . . . . . . . . 14 ({(𝐹𝑥)} ⊆ {(𝐹𝑥)} → (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)}) = ({(𝐹𝑥)} × ({𝑥} × V)))
2220, 21ax-mp 5 . . . . . . . . . . . . 13 (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)}) = ({(𝐹𝑥)} × ({𝑥} × V))
2322rneqi 5384 . . . . . . . . . . . 12 ran (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)}) = ran ({(𝐹𝑥)} × ({𝑥} × V))
2413snnz 4340 . . . . . . . . . . . . 13 {(𝐹𝑥)} ≠ ∅
25 rnxp 5599 . . . . . . . . . . . . 13 ({(𝐹𝑥)} ≠ ∅ → ran ({(𝐹𝑥)} × ({𝑥} × V)) = ({𝑥} × V))
2624, 25ax-mp 5 . . . . . . . . . . . 12 ran ({(𝐹𝑥)} × ({𝑥} × V)) = ({𝑥} × V)
2723, 26eqtri 2673 . . . . . . . . . . 11 ran (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)}) = ({𝑥} × V)
2819, 27eqtri 2673 . . . . . . . . . 10 (({(𝐹𝑥)} × ({𝑥} × V)) “ {(𝐹𝑥)}) = ({𝑥} × V)
2918, 28syl6eq 2701 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦}) = ({𝑥} × V))
3017, 29xpeq12d 5174 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (((1st ↾ (V × V)) “ {𝑦}) × (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦})) = (({(𝐹𝑥)} × V) × ({𝑥} × V)))
3113, 30iunxsn 4635 . . . . . . 7 𝑦 ∈ {(𝐹𝑥)} (((1st ↾ (V × V)) “ {𝑦}) × (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦})) = (({(𝐹𝑥)} × V) × ({𝑥} × V))
3212, 31eqtri 2673 . . . . . 6 (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = (({(𝐹𝑥)} × V) × ({𝑥} × V))
3332cnveqi 5329 . . . . 5 (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = (({(𝐹𝑥)} × V) × ({𝑥} × V))
34 cnvco 5340 . . . . 5 (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = ((1st ↾ (V × V)) ∘ ({(𝐹𝑥)} × ({𝑥} × V)))
35 cnvxp 5586 . . . . 5 (({(𝐹𝑥)} × V) × ({𝑥} × V)) = (({𝑥} × V) × ({(𝐹𝑥)} × V))
3633, 34, 353eqtr3i 2681 . . . 4 ((1st ↾ (V × V)) ∘ ({(𝐹𝑥)} × ({𝑥} × V))) = (({𝑥} × V) × ({(𝐹𝑥)} × V))
37 fparlem1 7322 . . . . . . . . 9 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)
3837xpeq2i 5170 . . . . . . . 8 ({(𝐹𝑥)} × ((1st ↾ (V × V)) “ {𝑥})) = ({(𝐹𝑥)} × ({𝑥} × V))
39 fnsnfv 6297 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
4039xpeq1d 5172 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ({(𝐹𝑥)} × ((1st ↾ (V × V)) “ {𝑥})) = ((𝐹 “ {𝑥}) × ((1st ↾ (V × V)) “ {𝑥})))
4138, 40syl5eqr 2699 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ({(𝐹𝑥)} × ({𝑥} × V)) = ((𝐹 “ {𝑥}) × ((1st ↾ (V × V)) “ {𝑥})))
4241cnveqd 5330 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → ({(𝐹𝑥)} × ({𝑥} × V)) = ((𝐹 “ {𝑥}) × ((1st ↾ (V × V)) “ {𝑥})))
43 cnvxp 5586 . . . . . 6 ((𝐹 “ {𝑥}) × ((1st ↾ (V × V)) “ {𝑥})) = (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))
4442, 43syl6eq 2701 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ({(𝐹𝑥)} × ({𝑥} × V)) = (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥})))
4544coeq2d 5317 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → ((1st ↾ (V × V)) ∘ ({(𝐹𝑥)} × ({𝑥} × V))) = ((1st ↾ (V × V)) ∘ (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))))
4636, 45syl5eqr 2699 . . 3 ((𝐹 Fn 𝐴𝑥𝐴) → (({𝑥} × V) × ({(𝐹𝑥)} × V)) = ((1st ↾ (V × V)) ∘ (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))))
4746iuneq2dv 4574 . 2 (𝐹 Fn 𝐴 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)) = 𝑥𝐴 ((1st ↾ (V × V)) ∘ (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))))
481, 7, 473eqtr4a 2711 1 (𝐹 Fn 𝐴 → ((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) = 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  Vcvv 3231   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  {csn 4210  ∪ ciun 4552   × cxp 5141  ◡ccnv 5142  dom cdm 5143  ran crn 5144   ↾ cres 5145   “ cima 5146   ∘ ccom 5147   Fn wfn 5921  ‘cfv 5926  1st c1st 7208 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-1st 7210  df-2nd 7211 This theorem is referenced by:  fpar  7326
 Copyright terms: Public domain W3C validator