![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fparlem1 | Structured version Visualization version GIF version |
Description: Lemma for fpar 7326. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fparlem1 | ⊢ (◡(1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6245 | . . . . . 6 ⊢ (𝑦 ∈ (V × V) → ((1st ↾ (V × V))‘𝑦) = (1st ‘𝑦)) | |
2 | 1 | eqeq1d 2653 | . . . . 5 ⊢ (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ (1st ‘𝑦) = 𝑥)) |
3 | vex 3234 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | 3 | elsn2 4244 | . . . . . 6 ⊢ ((1st ‘𝑦) ∈ {𝑥} ↔ (1st ‘𝑦) = 𝑥) |
5 | fvex 6239 | . . . . . . 7 ⊢ (2nd ‘𝑦) ∈ V | |
6 | 5 | biantru 525 | . . . . . 6 ⊢ ((1st ‘𝑦) ∈ {𝑥} ↔ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V)) |
7 | 4, 6 | bitr3i 266 | . . . . 5 ⊢ ((1st ‘𝑦) = 𝑥 ↔ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V)) |
8 | 2, 7 | syl6bb 276 | . . . 4 ⊢ (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V))) |
9 | 8 | pm5.32i 670 | . . 3 ⊢ ((𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥) ↔ (𝑦 ∈ (V × V) ∧ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V))) |
10 | f1stres 7234 | . . . 4 ⊢ (1st ↾ (V × V)):(V × V)⟶V | |
11 | ffn 6083 | . . . 4 ⊢ ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V)) | |
12 | fniniseg 6378 | . . . 4 ⊢ ((1st ↾ (V × V)) Fn (V × V) → (𝑦 ∈ (◡(1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥))) | |
13 | 10, 11, 12 | mp2b 10 | . . 3 ⊢ (𝑦 ∈ (◡(1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥)) |
14 | elxp7 7245 | . . 3 ⊢ (𝑦 ∈ ({𝑥} × V) ↔ (𝑦 ∈ (V × V) ∧ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V))) | |
15 | 9, 13, 14 | 3bitr4i 292 | . 2 ⊢ (𝑦 ∈ (◡(1st ↾ (V × V)) “ {𝑥}) ↔ 𝑦 ∈ ({𝑥} × V)) |
16 | 15 | eqriv 2648 | 1 ⊢ (◡(1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {csn 4210 × cxp 5141 ◡ccnv 5142 ↾ cres 5145 “ cima 5146 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 1st c1st 7208 2nd c2nd 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-1st 7210 df-2nd 7211 |
This theorem is referenced by: fparlem3 7324 |
Copyright terms: Public domain | W3C validator |