MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovrnda Structured version   Visualization version   GIF version

Theorem fovrnda 6970
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypothesis
Ref Expression
fovrnd.1 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
Assertion
Ref Expression
fovrnda ((𝜑 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovrnda
StepHypRef Expression
1 fovrnd.1 . . 3 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
2 fovrn 6969 . . 3 ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
31, 2syl3an1 1167 . 2 ((𝜑𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
433expb 1114 1 ((𝜑 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2139   × cxp 5264  wf 6045  (class class class)co 6813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6816
This theorem is referenced by:  eroprf  8012  yonedalem3  17121  yonedainv  17122  gass  17934  mamulid  20449  mamurid  20450  maducoeval2  20648  madutpos  20650  madugsum  20651  madurid  20652  isxmet2d  22333  prdsxmetlem  22374  rrxds  23381  ofrn  29750  metideq  30245  sibfof  30711
  Copyright terms: Public domain W3C validator