![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovrnd | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
fovrnd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
fovrnd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
fovrnd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fovrnd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovrnd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
2 | fovrnd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
3 | fovrnd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | fovrn 6846 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1366 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 × cxp 5141 ⟶wf 5922 (class class class)co 6690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 |
This theorem is referenced by: eroveu 7885 fseqenlem1 8885 rlimcn2 14365 homarel 16733 curf1cl 16915 curf2cl 16918 hofcllem 16945 yonedalem3b 16966 gasubg 17781 gacan 17784 gapm 17785 gastacos 17789 orbsta 17792 galactghm 17869 sylow1lem2 18060 sylow2alem2 18079 sylow3lem1 18088 efgcpbllemb 18214 frgpuplem 18231 frlmbas3 20163 mamucl 20255 mamuass 20256 mamudi 20257 mamudir 20258 mamuvs1 20259 mamuvs2 20260 mamulid 20295 mamurid 20296 mamutpos 20312 matgsumcl 20314 mavmulcl 20401 mavmulass 20403 mdetleib2 20442 mdetf 20449 mdetdiaglem 20452 mdetrlin 20456 mdetrsca 20457 mdetralt 20462 mdetunilem7 20472 maducoeval2 20494 madugsum 20497 madurid 20498 tsmsxplem2 22004 isxmet2d 22179 ismet2 22185 prdsxmetlem 22220 comet 22365 ipcn 23091 ovoliunlem2 23317 itg1addlem4 23511 itg1addlem5 23512 mbfi1fseqlem5 23531 limccnp2 23701 midcl 25714 pstmxmet 30068 cvmlift2lem9 31419 isbnd3 33713 prdsbnd 33722 iscringd 33927 rmxycomplete 37799 rmxyadd 37803 |
Copyright terms: Public domain | W3C validator |