MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovrn Structured version   Visualization version   GIF version

Theorem fovrn 6972
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
fovrn ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovrn
StepHypRef Expression
1 opelxpi 5300 . . 3 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
2 df-ov 6815 . . . 4 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
3 ffvelrn 6517 . . . 4 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶)
42, 3syl5eqel 2857 . . 3 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
51, 4sylan2 581 . 2 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
653impb 1134 1 ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1098  wcel 2148  cop 4332   × cxp 5261  wf 6038  cfv 6042  (class class class)co 6812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-sep 4928  ax-nul 4936  ax-pr 5048
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3357  df-sbc 3594  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-nul 4074  df-if 4236  df-sn 4327  df-pr 4329  df-op 4333  df-uni 4586  df-br 4798  df-opab 4860  df-id 5171  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-fv 6050  df-ov 6815
This theorem is referenced by:  fovrnda  6973  fovrnd  6974  ovmpt2elrn  7412  curry1f  7443  curry2f  7445  mapxpen  8303  axdc4lem  9500  axdc4uzlem  13012  imasmnd2  17555  grpsubcl  17723  imasgrp2  17758  imasring  18847  tsmsxplem1  22196  psmetcl  22352  xmetcl  22376  metcl  22377  blssm  22463  mbfi1fseqlem3  23725  mbfi1fseqlem4  23726  mbfi1fseqlem5  23727  grpocl  27711  grpodivcl  27750  vccl  27775  nvmcl  27858  cvmliftphtlem  31654  matunitlindflem1  33755  isbnd3  33931  clmgmOLD  33998  rngocl  34048  isdrngo2  34105
  Copyright terms: Public domain W3C validator