MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovrn Structured version   Visualization version   GIF version

Theorem fovrn 6846
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
fovrn ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovrn
StepHypRef Expression
1 opelxpi 5182 . . 3 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
2 df-ov 6693 . . . 4 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
3 ffvelrn 6397 . . . 4 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶)
42, 3syl5eqel 2734 . . 3 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
51, 4sylan2 490 . 2 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
653impb 1279 1 ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054  wcel 2030  cop 4216   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693
This theorem is referenced by:  fovrnda  6847  fovrnd  6848  ovmpt2elrn  7286  curry1f  7316  curry2f  7318  mapxpen  8167  axdc4lem  9315  axdc4uzlem  12822  imasmnd2  17374  grpsubcl  17542  imasgrp2  17577  imasring  18665  tsmsxplem1  22003  psmetcl  22159  xmetcl  22183  metcl  22184  blssm  22270  mbfi1fseqlem3  23529  mbfi1fseqlem4  23530  mbfi1fseqlem5  23531  grpocl  27482  grpodivcl  27521  vccl  27546  nvmcl  27629  cvmliftphtlem  31425  matunitlindflem1  33535  isbnd3  33713  clmgmOLD  33780  rngocl  33830  isdrngo2  33887
  Copyright terms: Public domain W3C validator