![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version |
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) |
Ref | Expression |
---|---|
fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
Ref | Expression |
---|---|
fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovcl.1 | . . 3 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
2 | ffnov 6806 | . . . 4 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶)) | |
3 | 2 | simprbi 479 | . . 3 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 |
5 | oveq1 6697 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
6 | 5 | eleq1d 2715 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝑦) ∈ 𝐶)) |
7 | oveq2 6698 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
8 | 7 | eleq1d 2715 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
9 | 6, 8 | rspc2v 3353 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 → (𝐴𝐹𝐵) ∈ 𝐶)) |
10 | 4, 9 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 × cxp 5141 Fn wfn 5921 ⟶wf 5922 (class class class)co 6690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 |
This theorem is referenced by: addclnq 9805 mulclnq 9807 adderpq 9816 mulerpq 9817 distrnq 9821 axaddcl 10010 axmulcl 10012 xaddcl 12108 xmulcl 12141 elfzoelz 12509 addcnlem 22714 sgmcl 24917 hvaddcl 27997 hvmulcl 27998 hicl 28065 hhssabloilem 28246 rmxynorm 37800 rmxyneg 37802 rmxy1 37804 rmxy0 37805 rmxp1 37814 rmyp1 37815 rmxm1 37816 rmym1 37817 rmxluc 37818 rmyluc 37819 rmyluc2 37820 rmxdbl 37821 rmydbl 37822 rmxypos 37831 ltrmynn0 37832 ltrmxnn0 37833 lermxnn0 37834 rmxnn 37835 ltrmy 37836 rmyeq0 37837 rmyeq 37838 lermy 37839 rmynn 37840 rmynn0 37841 rmyabs 37842 jm2.24nn 37843 jm2.17a 37844 jm2.17b 37845 jm2.17c 37846 jm2.24 37847 rmygeid 37848 jm2.18 37872 jm2.19lem1 37873 jm2.19lem2 37874 jm2.19 37877 jm2.22 37879 jm2.23 37880 jm2.20nn 37881 jm2.25 37883 jm2.26a 37884 jm2.26lem3 37885 jm2.26 37886 jm2.15nn0 37887 jm2.16nn0 37888 jm2.27a 37889 jm2.27c 37891 rmydioph 37898 rmxdiophlem 37899 jm3.1lem1 37901 jm3.1 37904 expdiophlem1 37905 |
Copyright terms: Public domain | W3C validator |