Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem97 Structured version   Visualization version   GIF version

Theorem fourierdlem97 40183
Description: 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem97.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem97.g 𝐺 = (ℝ D 𝐹)
fourierdlem97.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem97.a (𝜑𝐵 ∈ ℝ)
fourierdlem97.b (𝜑𝐴 ∈ ℝ)
fourierdlem97.t 𝑇 = (𝐵𝐴)
fourierdlem97.m (𝜑𝑀 ∈ ℕ)
fourierdlem97.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem97.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem97.qcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem97.c (𝜑𝐶 ∈ ℝ)
fourierdlem97.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem97.j (𝜑𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
fourierdlem97.v 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
fourierdlem97.h 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
Assertion
Ref Expression
fourierdlem97 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Distinct variable groups:   𝑥,𝑘   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑦,𝐶,𝑔   𝐶,𝑖,𝑥,𝑦   𝐶,𝑚,𝑝,𝑦   𝑦,𝐷,𝑔   𝐷,𝑖,𝑥   𝐷,𝑚,𝑝   𝐹,𝑠,𝑥   𝑦,𝐹   𝑖,𝐺,𝑠   𝑦,𝐺   𝑖,𝐻,𝑠,𝑥   ,𝐽,𝑘,𝑖,𝑥   𝐽,𝑠   ,𝑀,𝑖,𝑥   𝑚,𝑀,𝑝   𝑀,𝑠   𝑄,,𝑘,𝑔,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝,𝑘   𝑄,𝑠   𝑇,,𝑘,𝑔,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑇,𝑠   ,𝑉,𝑘,𝑔   𝑖,𝑉,𝑥   𝑉,𝑝   𝑉,𝑠   𝜑,,𝑦,𝑔   𝜑,𝑖,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑝)   𝐴(𝑦,𝑔,,𝑘,𝑠)   𝐵(𝑦,𝑔,,𝑘,𝑠)   𝐶(,𝑘,𝑠)   𝐷(,𝑘,𝑠)   𝑃(𝑥,𝑦,𝑔,,𝑖,𝑘,𝑚,𝑠,𝑝)   𝐹(𝑔,,𝑖,𝑘,𝑚,𝑝)   𝐺(𝑥,𝑔,,𝑘,𝑚,𝑝)   𝐻(𝑦,𝑔,,𝑘,𝑚,𝑝)   𝐽(𝑦,𝑔,𝑚,𝑝)   𝑀(𝑦,𝑔,𝑘)   𝑉(𝑦,𝑚)

Proof of Theorem fourierdlem97
Dummy variables 𝑓 𝑙 𝑡 𝑢 𝑤 𝑧 𝑣 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 12220 . . . . . . . 8 ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ
21a1i 11 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ)
32sselda 3595 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ ℝ)
4 iftrue 4083 . . . . . . . . . . 11 (𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
54adantl 482 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
6 fourierdlem97.f . . . . . . . . . . . . . 14 (𝜑𝐹:ℝ⟶ℝ)
7 ssid 3616 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ
8 dvfre 23695 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
96, 7, 8sylancl 693 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
10 fourierdlem97.g . . . . . . . . . . . . . 14 𝐺 = (ℝ D 𝐹)
1110feq1i 6023 . . . . . . . . . . . . 13 (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
129, 11sylibr 224 . . . . . . . . . . . 12 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
1312adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
14 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ dom 𝐺𝑠 ∈ dom 𝐺)
1510dmeqi 5314 . . . . . . . . . . . . 13 dom 𝐺 = dom (ℝ D 𝐹)
1614, 15syl6eleq 2709 . . . . . . . . . . . 12 (𝑠 ∈ dom 𝐺𝑠 ∈ dom (ℝ D 𝐹))
1716adantl 482 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝑠 ∈ dom (ℝ D 𝐹))
1813, 17ffvelrnd 6346 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → (𝐺𝑠) ∈ ℝ)
195, 18eqeltrd 2699 . . . . . . . . 9 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2019adantlr 750 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
21 iffalse 4086 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
22 0red 10026 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → 0 ∈ ℝ)
2321, 22eqeltrd 2699 . . . . . . . . 9 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2423adantl 482 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ ¬ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2520, 24pm2.61dan 831 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
263, 25syldan 487 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
27 fourierdlem97.h . . . . . . 7 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
2827fvmpt2 6278 . . . . . 6 ((𝑠 ∈ ℝ ∧ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
293, 26, 28syl2anc 692 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
30 fourierdlem97.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
31 fourierdlem97.p . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
32 fourierdlem97.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
33 fourierdlem97.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem97.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
35 fourierdlem97.d . . . . . . . . . . 11 (𝜑𝐷 ∈ (𝐶(,)+∞))
36 elioore 12190 . . . . . . . . . . 11 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
3735, 36syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
3834rexrd 10074 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ*)
39 pnfxr 10077 . . . . . . . . . . . 12 +∞ ∈ ℝ*
4039a1i 11 . . . . . . . . . . 11 (𝜑 → +∞ ∈ ℝ*)
41 ioogtlb 39520 . . . . . . . . . . 11 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (𝐶(,)+∞)) → 𝐶 < 𝐷)
4238, 40, 35, 41syl3anc 1324 . . . . . . . . . 10 (𝜑𝐶 < 𝐷)
43 oveq1 6642 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 + ( · 𝑇)) = (𝑥 + ( · 𝑇)))
4443eleq1d 2684 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4544rexbidv 3048 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4645cbvrabv 3194 . . . . . . . . . . 11 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄}
4746uneq2i 3756 . . . . . . . . . 10 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄})
48 oveq1 6642 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑇) = (𝑙 · 𝑇))
4948oveq2d 6651 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
5049eleq1d 2684 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5150cbvrexv 3167 . . . . . . . . . . . . . . . 16 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄)
5251a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5352rabbiia 3180 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
5453uneq2i 3756 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
55 oveq1 6642 . . . . . . . . . . . . . . . . . . 19 (𝑙 = → (𝑙 · 𝑇) = ( · 𝑇))
5655oveq2d 6651 . . . . . . . . . . . . . . . . . 18 (𝑙 = → (𝑦 + (𝑙 · 𝑇)) = (𝑦 + ( · 𝑇)))
5756eleq1d 2684 . . . . . . . . . . . . . . . . 17 (𝑙 = → ((𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
5857cbvrexv 3167 . . . . . . . . . . . . . . . 16 (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
5958a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
6059rabbiia 3180 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}
6160uneq2i 3756 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6254, 61eqtri 2642 . . . . . . . . . . . 12 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6362fveq2i 6181 . . . . . . . . . . 11 (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))
6463oveq1i 6645 . . . . . . . . . 10 ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})) − 1)
65 fourierdlem97.v . . . . . . . . . 10 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
66 fourierdlem97.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
67 oveq1 6642 . . . . . . . . . . . . . 14 (𝑘 = → (𝑘 · 𝑇) = ( · 𝑇))
6867oveq2d 6651 . . . . . . . . . . . . 13 (𝑘 = → ((𝑄‘0) + (𝑘 · 𝑇)) = ((𝑄‘0) + ( · 𝑇)))
6968breq1d 4654 . . . . . . . . . . . 12 (𝑘 = → (((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)))
7069cbvrabv 3194 . . . . . . . . . . 11 {𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)} = { ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}
7170supeq1i 8338 . . . . . . . . . 10 sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({ ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
72 fveq2 6178 . . . . . . . . . . . . . 14 (𝑗 = 𝑒 → (𝑄𝑗) = (𝑄𝑒))
7372oveq1d 6650 . . . . . . . . . . . . 13 (𝑗 = 𝑒 → ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) = ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)))
7473breq1d 4654 . . . . . . . . . . . 12 (𝑗 = 𝑒 → (((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)))
7574cbvrabv 3194 . . . . . . . . . . 11 {𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)} = {𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}
7675supeq1i 8338 . . . . . . . . . 10 sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
7730, 31, 32, 33, 34, 37, 42, 47, 64, 65, 66, 71, 76fourierdlem64 40150 . . . . . . . . 9 (𝜑 → ((sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ (0..^𝑀) ∧ sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ ℤ) ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))))
7877simprd 479 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
79 simpl1 1062 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝜑)
80 simpl2l 1112 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑖 ∈ (0..^𝑀))
81 fourierdlem97.qcn . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
82 cncff 22677 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
84 ffun 6035 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺:dom (ℝ D 𝐹)⟶ℝ → Fun 𝐺)
8512, 84syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → Fun 𝐺)
8685adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → Fun 𝐺)
87 ffvresb 6380 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8886, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8983, 88mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9089r19.21bi 2929 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9190simpld 475 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ dom 𝐺)
9291ralrimiva 2963 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
93 dfss3 3585 . . . . . . . . . . . . . . . 16 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
9492, 93sylibr 224 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
9579, 80, 94syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
96 simpl2 1063 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ))
9779, 96jca 554 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)))
98 simpl3 1064 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
99 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))))
10098, 99sseldd 3596 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
10131fourierdlem2 40089 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10232, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10333, 102mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
104103simpld 475 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
105 elmapi 7864 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄:(0...𝑀)⟶ℝ)
107106adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
108 elfzofz 12469 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
109108adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
110107, 109ffvelrnd 6346 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
111110rexrd 10074 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
112111adantrr 752 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ*)
113112adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
114 fzofzp1 12549 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
115114adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
116107, 115ffvelrnd 6346 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
117116adantrr 752 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
118117adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
119118rexrd 10074 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
120 elioore 12190 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → 𝑡 ∈ ℝ)
121120adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ ℝ)
122 zre 11366 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ ℤ → 𝑙 ∈ ℝ)
123122adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
124123ad2antlr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑙 ∈ ℝ)
125 fourierdlem97.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
126 fourierdlem97.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
127125, 126resubcld 10443 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
12830, 127syl5eqel 2703 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
129128ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑇 ∈ ℝ)
130124, 129remulcld 10055 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑙 · 𝑇) ∈ ℝ)
131121, 130resubcld 10443 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ℝ)
132110adantrr 752 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ)
133122ad2antll 764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑙 ∈ ℝ)
134128adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑇 ∈ ℝ)
135133, 134remulcld 10055 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑙 · 𝑇) ∈ ℝ)
136132, 135readdcld 10054 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ)
137136rexrd 10074 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
138137adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
139117, 135readdcld 10054 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ)
140139rexrd 10074 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
141140adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
142 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
143 ioogtlb 39520 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
144138, 141, 142, 143syl3anc 1324 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
145132adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
146145, 130, 121ltaddsubd 10612 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡 ↔ (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇))))
147144, 146mpbid 222 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇)))
148 iooltub 39538 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
149138, 141, 142, 148syl3anc 1324 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
150121, 130, 118ltsubaddd 10608 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)) ↔ 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
151149, 150mpbird 247 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)))
152113, 119, 131, 147, 151eliood 39523 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15397, 100, 152syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15495, 153sseldd 3596 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)
155 elioore 12190 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) → 𝑡 ∈ ℝ)
156 recn 10011 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
157156adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
158 zcn 11367 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ℤ → 𝑙 ∈ ℂ)
159158ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑙 ∈ ℂ)
160128recnd 10053 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 ∈ ℂ)
161160ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℂ)
162159, 161mulcld 10045 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝑙 · 𝑇) ∈ ℂ)
163157, 162npcand 10381 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) = 𝑡)
164163eqcomd 2626 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
165164adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
166 ovex 6663 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 − (𝑙 · 𝑇)) ∈ V
167 eleq1 2687 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 ∈ dom 𝐺 ↔ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺))
168167anbi2d 739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) ↔ ((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)))
169 oveq1 6642 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 + (𝑙 · 𝑇)) = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
170169eleq1d 2684 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ↔ ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺))
171169fveq2d 6182 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))))
172 fveq2 6178 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺𝑠) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))
173171, 172eqeq12d 2635 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠) ↔ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
174170, 173anbi12d 746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)) ↔ (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))))
175168, 174imbi12d 334 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠))) ↔ (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))))
176 ax-resscn 9978 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℂ
177176a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ℝ ⊆ ℂ)
1786, 177fssd 6044 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:ℝ⟶ℂ)
179178adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
180122adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
181128adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑇 ∈ ℝ)
182180, 181remulcld 10055 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → (𝑙 · 𝑇) ∈ ℝ)
183178ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
184128ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
185 simplr 791 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑙 ∈ ℤ)
186 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
187 fourierdlem97.fper . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
188187ad4ant14 1291 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
189183, 184, 185, 186, 188fperiodmul 39331 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + (𝑙 · 𝑇))) = (𝐹𝑠))
190179, 182, 189, 10fperdvper 39896 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)))
191166, 175, 190vtocl 3254 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
192191simpld 475 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
193192adantlr 750 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
194165, 193eqeltrd 2699 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 ∈ dom 𝐺)
195194ex 450 . . . . . . . . . . . . . . . 16 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
196155, 195sylan2 491 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
197196adantlrl 755 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
1981973adantl3 1217 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
199154, 198mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ dom 𝐺)
200199ralrimiva 2963 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
201 dfss3 3585 . . . . . . . . . . 11 (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺 ↔ ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
202200, 201sylibr 224 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
2032023exp 1262 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)))
204203rexlimdvv 3033 . . . . . . . 8 (𝜑 → (∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺))
20578, 204mpd 15 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
206205sselda 3595 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ dom 𝐺)
207206iftrued 4085 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
20829, 207eqtr2d 2655 . . . 4 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐺𝑠) = (𝐻𝑠))
209208mpteq2dva 4735 . . 3 (𝜑 → (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
21015a1i 11 . . . . . 6 (𝜑 → dom 𝐺 = dom (ℝ D 𝐹))
211210feq2d 6018 . . . . 5 (𝜑 → (𝐺:dom 𝐺⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
21212, 211mpbird 247 . . . 4 (𝜑𝐺:dom 𝐺⟶ℝ)
213212, 205feqresmpt 6237 . . 3 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)))
21425, 27fmptd 6371 . . . 4 (𝜑𝐻:ℝ⟶ℝ)
215214, 2feqresmpt 6237 . . 3 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
216209, 213, 2153eqtr4d 2664 . 2 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))))
217214, 177fssd 6044 . . 3 (𝜑𝐻:ℝ⟶ℂ)
21827a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
219 eleq1 2687 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝑠 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
220 fveq2 6178 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝐺𝑠) = (𝐺‘(𝑥 + 𝑇)))
221219, 220ifbieq1d 4100 . . . . . . . 8 (𝑠 = (𝑥 + 𝑇) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
222178, 128, 187, 10fperdvper 39896 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥)))
223222simpld 475 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
224223iftrued 4085 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = (𝐺‘(𝑥 + 𝑇)))
225221, 224sylan9eqr 2676 . . . . . . 7 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
226225adantllr 754 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
227 simpr 477 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
228128adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
229227, 228readdcld 10054 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℝ)
230229adantr 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
231212ad2antrr 761 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐺:dom 𝐺⟶ℝ)
232223adantlr 750 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
233231, 232ffvelrnd 6346 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) ∈ ℝ)
234218, 226, 230, 233fvmptd 6275 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐺‘(𝑥 + 𝑇)))
235222simprd 479 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
236235adantlr 750 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
237 eleq1 2687 . . . . . . . . 9 (𝑠 = 𝑥 → (𝑠 ∈ dom 𝐺𝑥 ∈ dom 𝐺))
238 fveq2 6178 . . . . . . . . 9 (𝑠 = 𝑥 → (𝐺𝑠) = (𝐺𝑥))
239237, 238ifbieq1d 4100 . . . . . . . 8 (𝑠 = 𝑥 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
240239adantl 482 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
241 simplr 791 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
242 simpr 477 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
243242iftrued 4085 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
244212ffvelrnda 6345 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
245243, 244eqeltrd 2699 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
246245adantlr 750 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
247218, 240, 241, 246fvmptd 6275 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
248 simpr 477 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
249248iftrued 4085 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
250247, 249eqtr2d 2655 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐻𝑥))
251234, 236, 2503eqtrd 2658 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
252229recnd 10053 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℂ)
253228recnd 10053 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
254252, 253negsubd 10383 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) + -𝑇) = ((𝑥 + 𝑇) − 𝑇))
255227recnd 10053 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
256255, 253pncand 10378 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) − 𝑇) = 𝑥)
257254, 256eqtr2d 2655 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
258257adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
259 simpr 477 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
260 simpll 789 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝜑)
261260, 259jca 554 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺))
262 eleq1 2687 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → (𝑦 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
263262anbi2d 739 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → ((𝜑𝑦 ∈ dom 𝐺) ↔ (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺)))
264 oveq1 6642 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝑦 + -𝑇) = ((𝑥 + 𝑇) + -𝑇))
265264eleq1d 2684 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝑦 + -𝑇) ∈ dom 𝐺 ↔ ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺))
266264fveq2d 6182 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺‘(𝑦 + -𝑇)) = (𝐺‘((𝑥 + 𝑇) + -𝑇)))
267 fveq2 6178 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺𝑦) = (𝐺‘(𝑥 + 𝑇)))
268266, 267eqeq12d 2635 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦) ↔ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
269265, 268anbi12d 746 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → (((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)) ↔ (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
270263, 269imbi12d 334 . . . . . . . . . . 11 (𝑦 = (𝑥 + 𝑇) → (((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦))) ↔ ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))))
271128renegcld 10442 . . . . . . . . . . . 12 (𝜑 → -𝑇 ∈ ℝ)
272160mulm1d 10467 . . . . . . . . . . . . . . . . 17 (𝜑 → (-1 · 𝑇) = -𝑇)
273272eqcomd 2626 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑇 = (-1 · 𝑇))
274273adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → -𝑇 = (-1 · 𝑇))
275274oveq2d 6651 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝑦 + -𝑇) = (𝑦 + (-1 · 𝑇)))
276275fveq2d 6182 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹‘(𝑦 + (-1 · 𝑇))))
277178adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
278128adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
279 1zzd 11393 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
280279znegcld 11469 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → -1 ∈ ℤ)
281 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
282187adantlr 750 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
283277, 278, 280, 281, 282fperiodmul 39331 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + (-1 · 𝑇))) = (𝐹𝑦))
284276, 283eqtrd 2654 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹𝑦))
285178, 271, 284, 10fperdvper 39896 . . . . . . . . . . 11 ((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)))
286270, 285vtoclg 3261 . . . . . . . . . 10 ((𝑥 + 𝑇) ∈ dom 𝐺 → ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
287259, 261, 286sylc 65 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
288287simpld 475 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺)
289258, 288eqeltrd 2699 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
290289stoic1a 1695 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ (𝑥 + 𝑇) ∈ dom 𝐺)
291290iffalsed 4088 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = 0)
29227a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
293221adantl 482 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
294229adantr 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
295 0red 10026 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 0 ∈ ℝ)
296291, 295eqeltrd 2699 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) ∈ ℝ)
297292, 293, 294, 296fvmptd 6275 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
298 simpr 477 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ 𝑥 ∈ dom 𝐺)
299298iffalsed 4088 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = 0)
300239, 299sylan9eqr 2676 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
301 simplr 791 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
302292, 300, 301, 295fvmptd 6275 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = 0)
303291, 297, 3023eqtr4d 2664 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
304251, 303pm2.61dan 831 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
305 elioore 12190 . . . . . . . . . 10 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
306305adantl 482 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
307305, 25sylan2 491 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
308306, 307, 28syl2anc 692 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
309308adantlr 750 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
31091iftrued 4085 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
311309, 310eqtrd 2654 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = (𝐺𝑠))
312311mpteq2dva 4735 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
313214adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:ℝ⟶ℝ)
314 ioossre 12220 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
315314a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
316313, 315feqresmpt 6237 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
317212adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺:dom 𝐺⟶ℝ)
318317, 94feqresmpt 6237 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
319312, 316, 3183eqtr4d 2664 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
320319, 81eqeltrd 2699 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
321 eqid 2620 . . 3 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
322 oveq1 6642 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 + (𝑙 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
323322eleq1d 2684 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
324323rexbidv 3048 . . . . . 6 (𝑧 = 𝑦 → (∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
325324cbvrabv 3194 . . . . 5 {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
326325uneq2i 3756 . . . 4 ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
327326eqcomi 2629 . . 3 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄})
32854fveq2i 6181 . . . 4 (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))
329328oveq1i 6645 . . 3 ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)
330 isoeq5 6556 . . . . . 6 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))))
33161, 330ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
332331iotabii 5861 . . . 4 (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
333 isoeq1 6552 . . . . 5 (𝑓 = 𝑔 → (𝑓 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))))
334333cbviotav 5845 . . . 4 (℩𝑓𝑓 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
335332, 334, 653eqtr4ri 2653 . . 3 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
336 id 22 . . . . 5 (𝑣 = 𝑥𝑣 = 𝑥)
337 oveq2 6643 . . . . . . . 8 (𝑣 = 𝑥 → (𝐵𝑣) = (𝐵𝑥))
338337oveq1d 6650 . . . . . . 7 (𝑣 = 𝑥 → ((𝐵𝑣) / 𝑇) = ((𝐵𝑥) / 𝑇))
339338fveq2d 6182 . . . . . 6 (𝑣 = 𝑥 → (⌊‘((𝐵𝑣) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
340339oveq1d 6650 . . . . 5 (𝑣 = 𝑥 → ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
341336, 340oveq12d 6653 . . . 4 (𝑣 = 𝑥 → (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
342341cbvmptv 4741 . . 3 (𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
343 eqeq1 2624 . . . . 5 (𝑢 = 𝑧 → (𝑢 = 𝐵𝑧 = 𝐵))
344 id 22 . . . . 5 (𝑢 = 𝑧𝑢 = 𝑧)
345343, 344ifbieq2d 4102 . . . 4 (𝑢 = 𝑧 → if(𝑢 = 𝐵, 𝐴, 𝑢) = if(𝑧 = 𝐵, 𝐴, 𝑧))
346345cbvmptv 4741 . . 3 (𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢)) = (𝑧 ∈ (𝐴(,]𝐵) ↦ if(𝑧 = 𝐵, 𝐴, 𝑧))
347 eqid 2620 . . 3 ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))) = ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))
348 eqid 2620 . . 3 (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))) = (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))
349 eqid 2620 . . 3 (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))))) = (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))))
350 fveq2 6178 . . . . . . . 8 (𝑖 = 𝑡 → (𝑄𝑖) = (𝑄𝑡))
351350breq1d 4654 . . . . . . 7 (𝑖 = 𝑡 → ((𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))))
352351cbvrabv 3194 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}
353 fveq2 6178 . . . . . . . . . 10 (𝑤 = 𝑥 → ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤) = ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))
354353fveq2d 6182 . . . . . . . . 9 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)))
355354eqcomd 2626 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)))
356355breq2d 4656 . . . . . . 7 (𝑤 = 𝑥 → ((𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))))
357356rabbidv 3184 . . . . . 6 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))})
358352, 357syl5req 2667 . . . . 5 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))})
359358supeq1d 8337 . . . 4 (𝑤 = 𝑥 → sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
360359cbvmptv 4741 . . 3 (𝑤 ∈ ℝ ↦ sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
36131, 30, 32, 33, 217, 304, 320, 34, 35, 321, 327, 329, 335, 342, 346, 66, 347, 348, 349, 360fourierdlem90 40176 . 2 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
362216, 361eqeltrd 2699 1 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  wrex 2910  {crab 2913  cun 3565  wss 3567  ifcif 4077  {cpr 4170   class class class wbr 4644  cmpt 4720  dom cdm 5104  ran crn 5105  cres 5106  cio 5837  Fun wfun 5870  wf 5872  cfv 5876   Isom wiso 5877  (class class class)co 6635  𝑚 cmap 7842  supcsup 8331  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  +∞cpnf 10056  *cxr 10058   < clt 10059  cle 10060  cmin 10251  -cneg 10252   / cdiv 10669  cn 11005  cz 11362  (,)cioo 12160  (,]cioc 12161  [,]cicc 12163  ...cfz 12311  ..^cfzo 12449  cfl 12574  #chash 13100  cnccncf 22660   D cdv 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-plusg 15935  df-mulr 15936  df-starv 15937  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-rest 16064  df-topn 16065  df-topgen 16085  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-cmp 21171  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-cncf 22662  df-limc 23611  df-dv 23612
This theorem is referenced by:  fourierdlem112  40198
  Copyright terms: Public domain W3C validator