Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem88 Structured version   Visualization version   GIF version

Theorem fourierdlem88 40914
Description: Given a piecewise continuous function 𝐹, a continuous function 𝐾 and a continuous function 𝑆, the function 𝐺 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem88.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem88.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem88.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem88.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem88.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem88.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem88.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem88.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem88.n (𝜑𝑁 ∈ ℝ)
fourierdlem88.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
fourierdlem88.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem88.m (𝜑𝑀 ∈ ℕ)
fourierdlem88.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem88.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem88.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem88.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem88.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem88.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem88.i 𝐼 = (ℝ D 𝐹)
fourierdlem88.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
fourierdlem88.c (𝜑𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem88.d (𝜑𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
Assertion
Ref Expression
fourierdlem88 (𝜑𝐺 ∈ 𝐿1)
Distinct variable groups:   𝐶,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺,𝑠   𝐻,𝑠   𝐾,𝑠   𝐿,𝑠   𝑖,𝑀,𝑚,𝑝   𝑀,𝑠   𝑁,𝑠   𝑄,𝑖,𝑝   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝑌,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑖,𝑚,𝑝)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝑆(𝑖,𝑚,𝑝)   𝑈(𝑖,𝑚,𝑠,𝑝)   𝐹(𝑖,𝑚,𝑝)   𝐺(𝑚,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐼(𝑖,𝑚,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)   𝑁(𝑖,𝑚,𝑝)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚)   𝑊(𝑖,𝑚,𝑝)   𝑌(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem88
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem88.o . 2 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2 fourierdlem88.m . 2 (𝜑𝑀 ∈ ℕ)
3 pire 24409 . . . . 5 π ∈ ℝ
43a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
54renegcld 10649 . . 3 (𝜑 → -π ∈ ℝ)
6 fourierdlem88.v . . . . . . 7 (𝜑𝑉 ∈ (𝑃𝑀))
7 fourierdlem88.1 . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
87fourierdlem2 40829 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
92, 8syl 17 . . . . . . 7 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
106, 9mpbid 222 . . . . . 6 (𝜑 → (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
1110simpld 477 . . . . 5 (𝜑𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)))
12 elmapi 8045 . . . . 5 (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
13 frn 6214 . . . . 5 (𝑉:(0...𝑀)⟶ℝ → ran 𝑉 ⊆ ℝ)
1411, 12, 133syl 18 . . . 4 (𝜑 → ran 𝑉 ⊆ ℝ)
15 fourierdlem88.x . . . 4 (𝜑𝑋 ∈ ran 𝑉)
1614, 15sseldd 3745 . . 3 (𝜑𝑋 ∈ ℝ)
17 fourierdlem88.q . . 3 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
185, 4, 16, 7, 1, 2, 6, 17fourierdlem14 40841 . 2 (𝜑𝑄 ∈ (𝑂𝑀))
19 fourierdlem88.f . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
20 ioossre 12428 . . . . . . . . . 10 (𝑋(,)+∞) ⊆ ℝ
2120a1i 11 . . . . . . . . 9 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
2219, 21fssresd 6232 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
23 ax-resscn 10185 . . . . . . . . 9 ℝ ⊆ ℂ
2421, 23syl6ss 3756 . . . . . . . 8 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
25 eqid 2760 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
26 pnfxr 10284 . . . . . . . . . 10 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
2816ltpnfd 12148 . . . . . . . . 9 (𝜑𝑋 < +∞)
2925, 27, 16, 28lptioo1cn 40381 . . . . . . . 8 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
30 fourierdlem88.y . . . . . . . 8 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
3122, 24, 29, 30limcrecl 40364 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
32 ioossre 12428 . . . . . . . . . 10 (-∞(,)𝑋) ⊆ ℝ
3332a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3419, 33fssresd 6232 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
3533, 23syl6ss 3756 . . . . . . . 8 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
36 mnfxr 10288 . . . . . . . . . 10 -∞ ∈ ℝ*
3736a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
3816mnfltd 12151 . . . . . . . . 9 (𝜑 → -∞ < 𝑋)
3925, 37, 16, 38lptioo2cn 40380 . . . . . . . 8 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
40 fourierdlem88.w . . . . . . . 8 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
4134, 35, 39, 40limcrecl 40364 . . . . . . 7 (𝜑𝑊 ∈ ℝ)
42 fourierdlem88.h . . . . . . 7 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
43 fourierdlem88.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
44 fourierdlem88.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4519, 16, 31, 41, 42, 43, 44fourierdlem55 40881 . . . . . 6 (𝜑𝑈:(-π[,]π)⟶ℝ)
4645ffvelrnda 6522 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
47 fourierdlem88.n . . . . . . 7 (𝜑𝑁 ∈ ℝ)
48 fourierdlem88.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
4948fourierdlem5 40832 . . . . . . 7 (𝑁 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
5047, 49syl 17 . . . . . 6 (𝜑𝑆:(-π[,]π)⟶ℝ)
5150ffvelrnda 6522 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑆𝑠) ∈ ℝ)
5246, 51remulcld 10262 . . . 4 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
5352recnd 10260 . . 3 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℂ)
54 fourierdlem88.g . . 3 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
5553, 54fmptd 6548 . 2 (𝜑𝐺:(-π[,]π)⟶ℂ)
56 ssid 3765 . . . 4 ℂ ⊆ ℂ
57 cncfss 22903 . . . 4 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
5823, 56, 57mp2an 710 . . 3 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)
5919adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
601, 2, 18fourierdlem15 40842 . . . . . 6 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
6160adantr 472 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
62 elfzofz 12679 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
6362adantl 473 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
6461, 63ffvelrnd 6523 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
65 fzofzp1 12759 . . . . . 6 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
6665adantl 473 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
6761, 66ffvelrnd 6523 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
6816adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
697, 2, 6, 15fourierdlem12 40839 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
7068recnd 10260 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
7170addid2d 10429 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (0 + 𝑋) = 𝑋)
723a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ)
7372renegcld 10649 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ)
7473, 68readdcld 10261 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (-π + 𝑋) ∈ ℝ)
7572, 68readdcld 10261 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (π + 𝑋) ∈ ℝ)
7674, 75iccssred 40230 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
777, 2, 6fourierdlem15 40842 . . . . . . . . . . . . . . 15 (𝜑𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
7877adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
7978, 63ffvelrnd 6523 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋)))
8076, 79sseldd 3745 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
8180, 68resubcld 10650 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
8217fvmpt2 6453 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
8363, 81, 82syl2anc 696 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
8483oveq1d 6828 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
8580recnd 10260 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
8685, 70npcand 10588 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
8784, 86eqtrd 2794 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
88 fveq2 6352 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
8988oveq1d 6828 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
9089cbvmptv 4902 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
9117, 90eqtri 2782 . . . . . . . . . . . 12 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
9291a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
93 simpr 479 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → 𝑗 = (𝑖 + 1))
9493fveq2d 6356 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
9594oveq1d 6828 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
9678, 66ffvelrnd 6523 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
9776, 96sseldd 3745 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
9897, 68resubcld 10650 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
9992, 95, 66, 98fvmptd 6450 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
10099oveq1d 6828 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
10197recnd 10260 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
102101, 70npcand 10588 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
103100, 102eqtrd 2794 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
10487, 103oveq12d 6831 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
10571, 104eleq12d 2833 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((0 + 𝑋) ∈ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) ↔ 𝑋 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
10669, 105mtbird 314 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ (0 + 𝑋) ∈ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)))
107 0red 10233 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 0 ∈ ℝ)
10883, 81eqeltrd 2839 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
10999, 98eqeltrd 2839 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
110107, 108, 109, 68eliooshift 40232 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (0 + 𝑋) ∈ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))))
111106, 110mtbird 314 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
112 fourierdlem88.fcn . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
113104reseq2d 5551 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
114104oveq1d 6828 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
115112, 113, 1143eltr4d 2854 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
11631adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
11741adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
11847adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ ℝ)
11959, 64, 67, 68, 111, 115, 116, 117, 42, 43, 44, 118, 48, 54fourierdlem78 40904 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ))
12058, 119sseldi 3742 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
121 eqid 2760 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠))
122 eqid 2760 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠))
123 eqid 2760 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠)))
1243renegcli 10534 . . . . . . . . . . 11 -π ∈ ℝ
125124rexri 10289 . . . . . . . . . 10 -π ∈ ℝ*
126125a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -π ∈ ℝ*)
1273rexri 10289 . . . . . . . . . 10 π ∈ ℝ*
128127a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → π ∈ ℝ*)
12961adantr 472 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π))
130 simplr 809 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
131126, 128, 129, 130fourierdlem8 40835 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
132 ioossicc 12452 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
133132sseli 3740 . . . . . . . . 9 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
134133adantl 473 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
135131, 134sseldd 3745 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π))
13619, 16, 31, 41, 42fourierdlem9 40836 . . . . . . . . . 10 (𝜑𝐻:(-π[,]π)⟶ℝ)
137136ad2antrr 764 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐻:(-π[,]π)⟶ℝ)
138137, 135ffvelrnd 6523 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) ∈ ℝ)
13943fourierdlem43 40870 . . . . . . . . . 10 𝐾:(-π[,]π)⟶ℝ
140139a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐾:(-π[,]π)⟶ℝ)
141140, 135ffvelrnd 6523 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℝ)
142138, 141remulcld 10262 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
14344fvmpt2 6453 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
144135, 142, 143syl2anc 696 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
145144, 142eqeltrd 2839 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) ∈ ℝ)
146145recnd 10260 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) ∈ ℂ)
14747, 48fourierdlem18 40845 . . . . . . . . 9 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
148 cncff 22897 . . . . . . . . 9 (𝑆 ∈ ((-π[,]π)–cn→ℝ) → 𝑆:(-π[,]π)⟶ℝ)
149147, 148syl 17 . . . . . . . 8 (𝜑𝑆:(-π[,]π)⟶ℝ)
150149adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆:(-π[,]π)⟶ℝ)
151150adantr 472 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑆:(-π[,]π)⟶ℝ)
152151, 135ffvelrnd 6523 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℝ)
153152recnd 10260 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℂ)
154 eqid 2760 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠))
155 eqid 2760 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠))
156 eqid 2760 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠)))
157138recnd 10260 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) ∈ ℂ)
158141recnd 10260 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℂ)
159 fourierdlem88.r . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
160 fourierdlem88.i . . . . . . . 8 𝐼 = (ℝ D 𝐹)
161 fourierdlem88.ifn . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
16223a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
163161, 162fssd 6218 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
164 fourierdlem88.d . . . . . . . 8 (𝜑𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
165 eqid 2760 . . . . . . . 8 if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
16616, 7, 19, 15, 30, 41, 42, 2, 6, 159, 17, 1, 160, 163, 164, 165fourierdlem75 40901 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
167136adantr 472 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ)
168125a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
169127a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
170 simpr 479 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
171168, 169, 61, 170fourierdlem8 40835 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
172132, 171syl5ss 3755 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
173167, 172feqresmpt 6412 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
174173oveq1d 6828 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
175166, 174eleqtrd 2841 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
176 limcresi 23848 . . . . . . . 8 (𝐾 lim (𝑄𝑖)) ⊆ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
17743fourierdlem62 40888 . . . . . . . . . 10 𝐾 ∈ ((-π[,]π)–cn→ℝ)
178177a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾 ∈ ((-π[,]π)–cn→ℝ))
179178, 64cnlimci 23852 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ (𝐾 lim (𝑄𝑖)))
180176, 179sseldi 3742 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
181139a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾:(-π[,]π)⟶ℝ)
182181, 172feqresmpt 6412 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)))
183182oveq1d 6828 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
184180, 183eleqtrd 2841 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
185154, 155, 156, 157, 158, 175, 184mullimc 40351 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)))
186144eqcomd 2766 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻𝑠) · (𝐾𝑠)) = (𝑈𝑠))
187186mpteq2dva 4896 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)))
188187oveq1d 6828 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)))
189185, 188eleqtrd 2841 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)))
190 limcresi 23848 . . . . . 6 (𝑆 lim (𝑄𝑖)) ⊆ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
191147adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆 ∈ ((-π[,]π)–cn→ℝ))
192191, 64cnlimci 23852 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ (𝑆 lim (𝑄𝑖)))
193190, 192sseldi 3742 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
194150, 172feqresmpt 6412 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)))
195194oveq1d 6828 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
196193, 195eleqtrd 2841 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
197121, 122, 123, 146, 153, 189, 196mullimc 40351 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)))
19852, 54fmptd 6548 . . . . . . 7 (𝜑𝐺:(-π[,]π)⟶ℝ)
199198adantr 472 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺:(-π[,]π)⟶ℝ)
200199, 172feqresmpt 6412 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
201145, 152remulcld 10262 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
20254fvmpt2 6453 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
203135, 201, 202syl2anc 696 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
204203mpteq2dva 4896 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))))
205200, 204eqtr2d 2795 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
206205oveq1d 6828 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
207197, 206eleqtrd 2841 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
208 fourierdlem88.l . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
209 fourierdlem88.c . . . . . . . 8 (𝜑𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
210 eqid 2760 . . . . . . . 8 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
21116, 7, 19, 15, 31, 40, 42, 2, 6, 208, 17, 1, 160, 161, 209, 210fourierdlem74 40900 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
212173oveq1d 6828 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄‘(𝑖 + 1))))
213211, 212eleqtrd 2841 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄‘(𝑖 + 1))))
214 limcresi 23848 . . . . . . . 8 (𝐾 lim (𝑄‘(𝑖 + 1))) ⊆ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))
215178, 67cnlimci 23852 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ (𝐾 lim (𝑄‘(𝑖 + 1))))
216214, 215sseldi 3742 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
217182oveq1d 6828 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄‘(𝑖 + 1))))
218216, 217eleqtrd 2841 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄‘(𝑖 + 1))))
219154, 155, 156, 157, 158, 213, 218mullimc 40351 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄‘(𝑖 + 1))))
220187oveq1d 6828 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄‘(𝑖 + 1))))
221219, 220eleqtrd 2841 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄‘(𝑖 + 1))))
222 limcresi 23848 . . . . . 6 (𝑆 lim (𝑄‘(𝑖 + 1))) ⊆ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))
223191, 67cnlimci 23852 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ (𝑆 lim (𝑄‘(𝑖 + 1))))
224222, 223sseldi 3742 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
225194oveq1d 6828 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄‘(𝑖 + 1))))
226224, 225eleqtrd 2841 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄‘(𝑖 + 1))))
227121, 122, 123, 146, 153, 221, 226mullimc 40351 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄‘(𝑖 + 1))))
228205oveq1d 6828 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
229227, 228eleqtrd 2841 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2301, 2, 18, 55, 120, 207, 229fourierdlem69 40895 1 (𝜑𝐺 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  {crab 3054  wss 3715  ifcif 4230   class class class wbr 4804  cmpt 4881  ran crn 5267  cres 5268  wf 6045  cfv 6049  (class class class)co 6813  𝑚 cmap 8023  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  +∞cpnf 10263  -∞cmnf 10264  *cxr 10265   < clt 10266  cmin 10458  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  (,)cioo 12368  [,]cicc 12371  ...cfz 12519  ..^cfzo 12659  sincsin 14993  πcpi 14996  TopOpenctopn 16284  fldccnfld 19948  cnccncf 22880  𝐿1cibl 23585   lim climc 23825   D cdv 23826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cc 9449  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-ofr 7063  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-t1 21320  df-haus 21321  df-cmp 21392  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-ovol 23433  df-vol 23434  df-mbf 23587  df-itg1 23588  df-itg2 23589  df-ibl 23590  df-itg 23591  df-0p 23636  df-limc 23829  df-dv 23830
This theorem is referenced by:  fourierdlem95  40921  fourierdlem103  40929  fourierdlem104  40930
  Copyright terms: Public domain W3C validator