Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem83 Structured version   Visualization version   GIF version

Theorem fourierdlem83 40724
Description: The fourier partial sum for 𝐹 rewritten as an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem83.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem83.c 𝐶 = (-π(,)π)
fourierdlem83.fl1 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem83.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem83.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem83.x (𝜑𝑋 ∈ ℝ)
fourierdlem83.s 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
fourierdlem83.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem83.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fourierdlem83 (𝜑 → (𝑆𝑁) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
Distinct variable groups:   𝐴,𝑚,𝑛   𝐵,𝑚   𝑥,𝐶,𝑛,𝑠   𝑥,𝐷,𝑠   𝑛,𝐹,𝑥   𝑥,𝑁   𝑚,𝑁,𝑛   𝑁,𝑠   𝑥,𝑋   𝑚,𝑋,𝑛   𝑋,𝑠   𝜑,𝑥,𝑛   𝜑,𝑚   𝜑,𝑠
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑛,𝑠)   𝐶(𝑚)   𝐷(𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛,𝑠)   𝐹(𝑚,𝑠)

Proof of Theorem fourierdlem83
Dummy variables 𝑏 𝑐 𝑦 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem83.s . . . 4 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
21a1i 11 . . 3 (𝜑𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))))
3 oveq2 6698 . . . . . 6 (𝑚 = 𝑁 → (1...𝑚) = (1...𝑁))
43sumeq1d 14475 . . . . 5 (𝑚 = 𝑁 → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
54oveq2d 6706 . . . 4 (𝑚 = 𝑁 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
65adantl 481 . . 3 ((𝜑𝑚 = 𝑁) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
7 fourierdlem83.n . . 3 (𝜑𝑁 ∈ ℕ)
8 id 22 . . . . . 6 (𝜑𝜑)
9 0nn0 11345 . . . . . . 7 0 ∈ ℕ0
109a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
119elexi 3244 . . . . . . 7 0 ∈ V
12 eleq1 2718 . . . . . . . . 9 (𝑛 = 0 → (𝑛 ∈ ℕ0 ↔ 0 ∈ ℕ0))
1312anbi2d 740 . . . . . . . 8 (𝑛 = 0 → ((𝜑𝑛 ∈ ℕ0) ↔ (𝜑 ∧ 0 ∈ ℕ0)))
14 fveq2 6229 . . . . . . . . 9 (𝑛 = 0 → (𝐴𝑛) = (𝐴‘0))
1514eleq1d 2715 . . . . . . . 8 (𝑛 = 0 → ((𝐴𝑛) ∈ ℝ ↔ (𝐴‘0) ∈ ℝ))
1613, 15imbi12d 333 . . . . . . 7 (𝑛 = 0 → (((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ) ↔ ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)))
17 fourierdlem83.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
18 fourierdlem83.c . . . . . . . . . 10 𝐶 = (-π(,)π)
19 fourierdlem83.fl1 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
20 fourierdlem83.a . . . . . . . . . 10 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
21 fourierdlem83.b . . . . . . . . . 10 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
2217, 18, 19, 20, 21fourierdlem22 40664 . . . . . . . . 9 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
2322simpld 474 . . . . . . . 8 (𝜑 → (𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ))
2423imp 444 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
2511, 16, 24vtocl 3290 . . . . . 6 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)
268, 10, 25syl2anc 694 . . . . 5 (𝜑 → (𝐴‘0) ∈ ℝ)
2726rehalfcld 11317 . . . 4 (𝜑 → ((𝐴‘0) / 2) ∈ ℝ)
28 fzfid 12812 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
29 eleq1 2718 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 ∈ ℕ0𝑛 ∈ ℕ0))
3029anbi2d 740 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ0) ↔ (𝜑𝑛 ∈ ℕ0)))
31 simpl 472 . . . . . . . . . . . . . . . . . 18 ((𝑘 = 𝑛𝑥𝐶) → 𝑘 = 𝑛)
3231oveq1d 6705 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑛𝑥𝐶) → (𝑘 · 𝑥) = (𝑛 · 𝑥))
3332fveq2d 6233 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑛𝑥𝐶) → (cos‘(𝑘 · 𝑥)) = (cos‘(𝑛 · 𝑥)))
3433oveq2d 6706 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑛𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
3534itgeq2dv 23593 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥)
3635eleq1d 2715 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ))
3730, 36imbi12d 333 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)))
3817adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
3919adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝐶) ∈ 𝐿1)
40 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
4138, 18, 39, 20, 40fourierdlem16 40658 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
4241simprd 478 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ)
4337, 42chvarv 2299 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
44 pire 24255 . . . . . . . . . . . 12 π ∈ ℝ
4544a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → π ∈ ℝ)
46 0re 10078 . . . . . . . . . . . . 13 0 ∈ ℝ
47 pipos 24257 . . . . . . . . . . . . 13 0 < π
4846, 47gtneii 10187 . . . . . . . . . . . 12 π ≠ 0
4948a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → π ≠ 0)
5043, 45, 49redivcld 10891 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
5150, 20fmptd 6425 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℝ)
5251adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐴:ℕ0⟶ℝ)
53 elfznn 12408 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
5453nnnn0d 11389 . . . . . . . . 9 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ0)
5554adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ0)
5652, 55ffvelrnd 6400 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴𝑛) ∈ ℝ)
5755nn0red 11390 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ)
58 fourierdlem83.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
5958adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℝ)
6057, 59remulcld 10108 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 · 𝑋) ∈ ℝ)
6160recoscld 14918 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
6256, 61remulcld 10108 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
63 eleq1 2718 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ))
6463anbi2d 740 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
65 oveq1 6697 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝑘 · 𝑥) = (𝑛 · 𝑥))
6665fveq2d 6233 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑛 · 𝑥)))
6766oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
6867adantr 480 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑛𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
6968itgeq2dv 23593 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥)
7069eleq1d 2715 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ))
7164, 70imbi12d 333 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)))
7217adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
7319adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹𝐶) ∈ 𝐿1)
74 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7572, 18, 73, 21, 74fourierdlem21 40663 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (((𝐵𝑘) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑘 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
7675simprd 478 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ)
7771, 76chvarv 2299 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
7844a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
7948a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
8077, 78, 79redivcld 10891 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
8180, 21fmptd 6425 . . . . . . . . 9 (𝜑𝐵:ℕ⟶ℝ)
8281adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐵:ℕ⟶ℝ)
8353adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
8482, 83ffvelrnd 6400 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐵𝑛) ∈ ℝ)
8560resincld 14917 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
8684, 85remulcld 10108 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
8762, 86readdcld 10107 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
8828, 87fsumrecl 14509 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
8927, 88readdcld 10107 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ)
902, 6, 7, 89fvmptd 6327 . 2 (𝜑 → (𝑆𝑁) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
9120a1i 11 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
92 oveq1 6697 . . . . . . . . . . . . 13 (𝑛 = 0 → (𝑛 · 𝑥) = (0 · 𝑥))
9392fveq2d 6233 . . . . . . . . . . . 12 (𝑛 = 0 → (cos‘(𝑛 · 𝑥)) = (cos‘(0 · 𝑥)))
9493oveq2d 6706 . . . . . . . . . . 11 (𝑛 = 0 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(0 · 𝑥))))
9594adantr 480 . . . . . . . . . 10 ((𝑛 = 0 ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(0 · 𝑥))))
9695itgeq2dv 23593 . . . . . . . . 9 (𝑛 = 0 → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥)
9796adantl 481 . . . . . . . 8 ((𝜑𝑛 = 0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥)
9897oveq1d 6705 . . . . . . 7 ((𝜑𝑛 = 0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π))
9917, 18, 19, 20, 10fourierdlem16 40658 . . . . . . . . 9 (𝜑 → (((𝐴‘0) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ))
10099simprd 478 . . . . . . . 8 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ)
10144a1i 11 . . . . . . . 8 (𝜑 → π ∈ ℝ)
10248a1i 11 . . . . . . . 8 (𝜑 → π ≠ 0)
103100, 101, 102redivcld 10891 . . . . . . 7 (𝜑 → (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π) ∈ ℝ)
10491, 98, 10, 103fvmptd 6327 . . . . . 6 (𝜑 → (𝐴‘0) = (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π))
105 ioosscn 40034 . . . . . . . . . . . . . . 15 (-π(,)π) ⊆ ℂ
106 id 22 . . . . . . . . . . . . . . . 16 (𝑥𝐶𝑥𝐶)
107106, 18syl6eleq 2740 . . . . . . . . . . . . . . 15 (𝑥𝐶𝑥 ∈ (-π(,)π))
108105, 107sseldi 3634 . . . . . . . . . . . . . 14 (𝑥𝐶𝑥 ∈ ℂ)
109108mul02d 10272 . . . . . . . . . . . . 13 (𝑥𝐶 → (0 · 𝑥) = 0)
110109fveq2d 6233 . . . . . . . . . . . 12 (𝑥𝐶 → (cos‘(0 · 𝑥)) = (cos‘0))
111 cos0 14924 . . . . . . . . . . . 12 (cos‘0) = 1
112110, 111syl6eq 2701 . . . . . . . . . . 11 (𝑥𝐶 → (cos‘(0 · 𝑥)) = 1)
113112oveq2d 6706 . . . . . . . . . 10 (𝑥𝐶 → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = ((𝐹𝑥) · 1))
114113adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = ((𝐹𝑥) · 1))
11517adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
116 ioossre 12273 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ ℝ
117116, 107sseldi 3634 . . . . . . . . . . . . 13 (𝑥𝐶𝑥 ∈ ℝ)
118117adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
119115, 118ffvelrnd 6400 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
120119recnd 10106 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
121120mulid1d 10095 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · 1) = (𝐹𝑥))
122114, 121eqtrd 2685 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = (𝐹𝑥))
123122itgeq2dv 23593 . . . . . . 7 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 = ∫𝐶(𝐹𝑥) d𝑥)
124123oveq1d 6705 . . . . . 6 (𝜑 → (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π) = (∫𝐶(𝐹𝑥) d𝑥 / π))
125104, 124eqtrd 2685 . . . . 5 (𝜑 → (𝐴‘0) = (∫𝐶(𝐹𝑥) d𝑥 / π))
126125oveq1d 6705 . . . 4 (𝜑 → ((𝐴‘0) / 2) = ((∫𝐶(𝐹𝑥) d𝑥 / π) / 2))
12717feqmptd 6288 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
128127reseq1d 5427 . . . . . . . 8 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
12944a1i 11 . . . . . . . . . . . 12 (𝑥𝐶 → π ∈ ℝ)
130129renegcld 10495 . . . . . . . . . . 11 (𝑥𝐶 → -π ∈ ℝ)
131 ioossicc 12297 . . . . . . . . . . . . 13 (-π(,)π) ⊆ (-π[,]π)
13218, 131eqsstri 3668 . . . . . . . . . . . 12 𝐶 ⊆ (-π[,]π)
133132sseli 3632 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ (-π[,]π))
134 eliccre 40046 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
135130, 129, 133, 134syl3anc 1366 . . . . . . . . . 10 (𝑥𝐶𝑥 ∈ ℝ)
136135ssriv 3640 . . . . . . . . 9 𝐶 ⊆ ℝ
137 resmpt 5484 . . . . . . . . 9 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
138136, 137mp1i 13 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
139128, 138eqtr2d 2686 . . . . . . 7 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
140139, 19eqeltrd 2730 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
141119, 140itgcl 23595 . . . . 5 (𝜑 → ∫𝐶(𝐹𝑥) d𝑥 ∈ ℂ)
142101recnd 10106 . . . . 5 (𝜑 → π ∈ ℂ)
143 2cnd 11131 . . . . 5 (𝜑 → 2 ∈ ℂ)
144 2ne0 11151 . . . . . 6 2 ≠ 0
145144a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
146141, 142, 143, 102, 145divdiv32d 10864 . . . 4 (𝜑 → ((∫𝐶(𝐹𝑥) d𝑥 / π) / 2) = ((∫𝐶(𝐹𝑥) d𝑥 / 2) / π))
147141, 143, 145divrecd 10842 . . . . . 6 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 / 2) = (∫𝐶(𝐹𝑥) d𝑥 · (1 / 2)))
148143, 145reccld 10832 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
149141, 148mulcomd 10099 . . . . . 6 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 · (1 / 2)) = ((1 / 2) · ∫𝐶(𝐹𝑥) d𝑥))
150148, 119, 140itgmulc2 23645 . . . . . 6 (𝜑 → ((1 / 2) · ∫𝐶(𝐹𝑥) d𝑥) = ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥)
151147, 149, 1503eqtrd 2689 . . . . 5 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 / 2) = ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥)
152151oveq1d 6705 . . . 4 (𝜑 → ((∫𝐶(𝐹𝑥) d𝑥 / 2) / π) = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π))
153126, 146, 1523eqtrd 2689 . . 3 (𝜑 → ((𝐴‘0) / 2) = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π))
15455, 50syldan 486 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
15520fvmpt2 6330 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) → (𝐴𝑛) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
15655, 154, 155syl2anc 694 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴𝑛) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
157156oveq1d 6705 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) · (cos‘(𝑛 · 𝑋))))
158154recnd 10106 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℂ)
15961recnd 10106 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝑋)) ∈ ℂ)
160158, 159mulcomd 10099 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) · (cos‘(𝑛 · 𝑋))) = ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
16155, 43syldan 486 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
162161recnd 10106 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℂ)
163142adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → π ∈ ℂ)
16448a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → π ≠ 0)
165159, 162, 163, 164divassd 10874 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) / π) = ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
16617ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝐹:ℝ⟶ℝ)
167117adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
168166, 167ffvelrnd 6400 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
169 nn0re 11339 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
170169ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
171170, 167remulcld 10108 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
172171recoscld 14918 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
173168, 172remulcld 10108 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
17454, 173sylanl2 684 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
175 ioombl 23379 . . . . . . . . . . . . . . . . . . 19 (-π(,)π) ∈ dom vol
17618, 175eqeltri 2726 . . . . . . . . . . . . . . . . . 18 𝐶 ∈ dom vol
177176elexi 3244 . . . . . . . . . . . . . . . . 17 𝐶 ∈ V
178177a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ V)
179 eqidd 2652 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
180 eqidd 2652 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
181178, 172, 168, 179, 180offval2 6956 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
182172recnd 10106 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
183120adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
184182, 183mulcomd 10099 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
185184mpteq2dva 4777 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
186181, 185eqtr2d 2686 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
187 coscn 24244 . . . . . . . . . . . . . . . . . 18 cos ∈ (ℂ–cn→ℂ)
188187a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → cos ∈ (ℂ–cn→ℂ))
189 ax-resscn 10031 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
190136, 189sstri 3645 . . . . . . . . . . . . . . . . . . . 20 𝐶 ⊆ ℂ
191190a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ⊆ ℂ)
192169recnd 10106 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
193192adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
194 ssid 3657 . . . . . . . . . . . . . . . . . . . 20 ℂ ⊆ ℂ
195194a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → ℂ ⊆ ℂ)
196191, 193, 195constcncfg 40402 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
197191, 195idcncfg 40403 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
198196, 197mulcncf 23261 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
199188, 198cncfmpt1f 22763 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
200 cnmbf 23471 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
201176, 199, 200sylancr 696 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
202140adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
203 1re 10077 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
204 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
205169adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
206117adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
207205, 206remulcld 10108 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
208207recoscld 14918 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ0𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
209208ralrimiva 2995 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ0 → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
210209adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
211 dmmptg 5670 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
212210, 211syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
213204, 212eleqtrd 2732 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦𝐶)
214 eqidd 2652 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
215 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
216215fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
217216adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
218 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
219169adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
220136, 218sseldi 3634 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
221219, 220remulcld 10108 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
222221recoscld 14918 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ)
223214, 217, 218, 222fvmptd 6327 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦)))
224223fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦))))
225 abscosbd 39804 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
226221, 225syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
227224, 226eqbrtrd 4707 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
228213, 227syldan 486 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
229228ralrimiva 2995 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
230 breq2 4689 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
231230ralbidv 3015 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
232231rspcev 3340 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
233203, 229, 232sylancr 696 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
234233adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
235 bddmulibl 23650 . . . . . . . . . . . . . . 15 (((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
236201, 202, 234, 235syl3anc 1366 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
237186, 236eqeltrd 2730 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
23855, 237syldan 486 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
239159, 174, 238itgmulc2 23645 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) d𝑥)
240159adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑋)) ∈ ℂ)
241120adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
24254, 182sylanl2 684 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
243240, 241, 242mul12d 10283 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥)))))
244240, 242mulcomd 10099 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥))) = ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))
245244oveq2d 6706 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))))
246243, 245eqtrd 2685 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))))
247246itgeq2dv 23593 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) d𝑥 = ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥)
248239, 247eqtrd 2685 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥)
249248oveq1d 6705 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
250165, 249eqtr3d 2687 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
251157, 160, 2503eqtrd 2689 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
25283, 80syldan 486 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
25321fvmpt2 6330 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) → (𝐵𝑛) = (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
25483, 252, 253syl2anc 694 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐵𝑛) = (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
255254oveq1d 6705 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) · (sin‘(𝑛 · 𝑋))))
256252recnd 10106 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℂ)
25785recnd 10106 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝑋)) ∈ ℂ)
258256, 257mulcomd 10099 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) · (sin‘(𝑛 · 𝑋))) = ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)))
25983, 77syldan 486 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
260259recnd 10106 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℂ)
261257, 260, 163, 164divassd 10874 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) / π) = ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)))
262119adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
263 nnre 11065 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
264263adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
265117adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
266264, 265remulcld 10108 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
267266resincld 14917 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
268267adantll 750 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
269262, 268remulcld 10108 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
27053, 269sylanl2 684 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
271177a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ V)
272 eqidd 2652 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
273 eqidd 2652 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
274271, 268, 262, 272, 273offval2 6956 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
275268recnd 10106 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
276120adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
277275, 276mulcomd 10099 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
278277mpteq2dva 4777 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
279274, 278eqtr2d 2686 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
280 sincn 24243 . . . . . . . . . . . . . . . . . 18 sin ∈ (ℂ–cn→ℂ)
281280a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → sin ∈ (ℂ–cn→ℂ))
282190a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝐶 ⊆ ℂ)
283263recnd 10106 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
284194a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ℂ ⊆ ℂ)
285282, 283, 284constcncfg 40402 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
286282, 284idcncfg 40403 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
287285, 286mulcncf 23261 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
288287adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
289281, 288cncfmpt1f 22763 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
290 cnmbf 23471 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
291176, 289, 290sylancr 696 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
292140adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
293 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
294267ralrimiva 2995 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
295 dmmptg 5670 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
296294, 295syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
297296adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
298293, 297eleqtrd 2732 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
299 eqidd 2652 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
300215fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
301300adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
302 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑦𝐶)
303263adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑛 ∈ ℝ)
304136, 302sseldi 3634 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑦 ∈ ℝ)
305303, 304remulcld 10108 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
306305resincld 14917 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
307299, 301, 302, 306fvmptd 6327 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
308307fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
309 abssinbd 39823 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
310305, 309syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
311308, 310eqbrtrd 4707 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
312298, 311syldan 486 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
313312ralrimiva 2995 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
314 breq2 4689 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
315314ralbidv 3015 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
316315rspcev 3340 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
317203, 313, 316sylancr 696 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
318317adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
319 bddmulibl 23650 . . . . . . . . . . . . . . 15 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
320291, 292, 318, 319syl3anc 1366 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
321279, 320eqeltrd 2730 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
32283, 321syldan 486 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
323257, 270, 322itgmulc2 23645 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) d𝑥)
324257adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑋)) ∈ ℂ)
32553, 275sylanl2 684 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
326324, 241, 325mul12d 10283 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥)))))
327324, 325mulcomd 10099 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥))) = ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))
328327oveq2d 6706 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
329326, 328eqtrd 2685 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
330329itgeq2dv 23593 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) d𝑥 = ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥)
331323, 330eqtrd 2685 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥)
332331oveq1d 6705 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
333261, 332eqtr3d 2687 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
334255, 258, 3333eqtrd 2689 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
335251, 334oveq12d 6708 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π) + (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π)))
33654, 168sylanl2 684 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
33755, 208sylan 487 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
33861adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
339337, 338remulcld 10108 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
340336, 339remulcld 10108 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) ∈ ℝ)
341241, 242, 240mul13d 39805 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) = ((cos‘(𝑛 · 𝑋)) · ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
342242, 241mulcomd 10099 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
343342oveq2d 6706 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
344341, 343eqtrd 2685 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) = ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
345344mpteq2dva 4777 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))))
346159, 174, 238iblmulc2 23642 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))) ∈ 𝐿1)
347345, 346eqeltrd 2730 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))) ∈ 𝐿1)
348340, 347itgcl 23595 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 ∈ ℂ)
34983, 267sylan 487 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
35085adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
351349, 350remulcld 10108 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
352336, 351remulcld 10108 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
353241, 325, 324mul13d 39805 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) = ((sin‘(𝑛 · 𝑋)) · ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
354325, 241mulcomd 10099 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
355354oveq2d 6706 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
356353, 355eqtrd 2685 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) = ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
357356mpteq2dva 4777 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))))
358257, 270, 322iblmulc2 23642 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))) ∈ 𝐿1)
359357, 358eqeltrd 2730 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) ∈ 𝐿1)
360352, 359itgcl 23595 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 ∈ ℂ)
361348, 360, 163, 164divdird 10877 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) / π) = ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π) + (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π)))
36253nncnd 11074 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
363362ad2antlr 763 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑛 ∈ ℂ)
364108adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑥 ∈ ℂ)
36558recnd 10106 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℂ)
366365ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑋 ∈ ℂ)
367363, 364, 366subdid 10524 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · (𝑥𝑋)) = ((𝑛 · 𝑥) − (𝑛 · 𝑋)))
368367fveq2d 6233 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))))
369363, 364mulcld 10098 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℂ)
370363, 366mulcld 10098 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · 𝑋) ∈ ℂ)
371 cossub 14943 . . . . . . . . . . . . 13 (((𝑛 · 𝑥) ∈ ℂ ∧ (𝑛 · 𝑋) ∈ ℂ) → (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
372369, 370, 371syl2anc 694 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
373368, 372eqtrd 2685 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
374373oveq2d 6706 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = ((𝐹𝑥) · (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
375339recnd 10106 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) ∈ ℂ)
376351recnd 10106 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))) ∈ ℂ)
377241, 375, 376adddid 10102 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) = (((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
378374, 377eqtrd 2685 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = (((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
379378itgeq2dv 23593 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = ∫𝐶(((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) d𝑥)
380340, 347, 352, 359itgadd 23636 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶(((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) d𝑥 = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥))
381379, 380eqtr2d 2686 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) = ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
382381oveq1d 6705 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
383335, 361, 3823eqtr2d 2691 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
384383sumeq2dv 14477 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑛 ∈ (1...𝑁)(∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
38557adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
386117adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
38758ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑋 ∈ ℝ)
388386, 387resubcld 10496 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑥𝑋) ∈ ℝ)
389385, 388remulcld 10108 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · (𝑥𝑋)) ∈ ℝ)
390389recoscld 14918 . . . . . . 7 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
391336, 390remulcld 10108 . . . . . 6 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
392177a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐶 ∈ V)
393 eqidd 2652 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
394 eqidd 2652 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
395392, 390, 336, 393, 394offval2 6956 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥))))
396390recnd 10106 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
397396, 241mulcomd 10099 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))))
398397mpteq2dva 4777 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))))
399395, 398eqtr2d 2686 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
400187a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → cos ∈ (ℂ–cn→ℂ))
40183, 285syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
40283, 286syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
403190a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐶 ⊆ ℂ)
404365adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
405194a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ℂ ⊆ ℂ)
406403, 404, 405constcncfg 40402 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑋) ∈ (𝐶cn→ℂ))
407402, 406subcncf 40400 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝑥𝑋)) ∈ (𝐶cn→ℂ))
408401, 407mulcncf 23261 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝑛 · (𝑥𝑋))) ∈ (𝐶cn→ℂ))
409400, 408cncfmpt1f 22763 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ (𝐶cn→ℂ))
410 cnmbf 23471 . . . . . . . . 9 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn)
411176, 409, 410sylancr 696 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn)
412140adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
413 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
414390ralrimiva 2995 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ∀𝑥𝐶 (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
415 dmmptg 5670 . . . . . . . . . . . . . 14 (∀𝑥𝐶 (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
416414, 415syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
417416adantr 480 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
418413, 417eleqtrd 2732 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → 𝑦𝐶)
419 eqidd 2652 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
420 oveq1 6697 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥𝑋) = (𝑦𝑋))
421420oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑛 · (𝑥𝑋)) = (𝑛 · (𝑦𝑋)))
422421fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘(𝑛 · (𝑦𝑋))))
423422adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘(𝑛 · (𝑦𝑋))))
424 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑦𝐶)
42557adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑛 ∈ ℝ)
42655, 220sylan 487 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑦 ∈ ℝ)
42758ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑋 ∈ ℝ)
428426, 427resubcld 10496 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑦𝑋) ∈ ℝ)
429425, 428remulcld 10108 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑛 · (𝑦𝑋)) ∈ ℝ)
430429recoscld 14918 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (cos‘(𝑛 · (𝑦𝑋))) ∈ ℝ)
431419, 423, 424, 430fvmptd 6327 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦) = (cos‘(𝑛 · (𝑦𝑋))))
432431fveq2d 6233 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) = (abs‘(cos‘(𝑛 · (𝑦𝑋)))))
433 abscosbd 39804 . . . . . . . . . . . . 13 ((𝑛 · (𝑦𝑋)) ∈ ℝ → (abs‘(cos‘(𝑛 · (𝑦𝑋)))) ≤ 1)
434429, 433syl 17 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘(cos‘(𝑛 · (𝑦𝑋)))) ≤ 1)
435432, 434eqbrtrd 4707 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
436418, 435syldan 486 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
437436ralrimiva 2995 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
438 breq2 4689 . . . . . . . . . . 11 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1))
439438ralbidv 3015 . . . . . . . . . 10 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1))
440439rspcev 3340 . . . . . . . . 9 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏)
441203, 437, 440sylancr 696 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏)
442 bddmulibl 23650 . . . . . . . 8 (((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
443411, 412, 441, 442syl3anc 1366 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
444399, 443eqeltrd 2730 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1)
445391, 444itgcl 23595 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 ∈ ℂ)
44628, 142, 445, 102fsumdivc 14562 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π) = Σ𝑛 ∈ (1...𝑁)(∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
447176a1i 11 . . . . . . . 8 (𝜑𝐶 ∈ dom vol)
448 anass 682 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶)))
449 ancom 465 . . . . . . . . . . 11 ((𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶) ↔ (𝑥𝐶𝑛 ∈ (1...𝑁)))
450449anbi2i 730 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶)) ↔ (𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))))
451448, 450bitri 264 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) ↔ (𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))))
452451, 391sylbir 225 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
453447, 28, 452, 444itgfsum 23638 . . . . . . 7 (𝜑 → ((𝑥𝐶 ↦ Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1 ∧ ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥))
454453simprd 478 . . . . . 6 (𝜑 → ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
455454eqcomd 2657 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
456455oveq1d 6705 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π) = (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
457384, 446, 4563eqtr2d 2691 . . 3 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
458153, 457oveq12d 6708 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)))
459 fourierdlem83.d . . . . . . . . . . 11 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
4607adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑁 ∈ ℕ)
461 eqid 2651 . . . . . . . . . . 11 (𝐷𝑁) = (𝐷𝑁)
462 eqid 2651 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π))
463459, 460, 461, 462dirkertrigeq 40636 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π)))
464 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑠 = (𝑥𝑋) → (𝑛 · 𝑠) = (𝑛 · (𝑥𝑋)))
465464fveq2d 6233 . . . . . . . . . . . . . 14 (𝑠 = (𝑥𝑋) → (cos‘(𝑛 · 𝑠)) = (cos‘(𝑛 · (𝑥𝑋))))
466465sumeq2sdv 14479 . . . . . . . . . . . . 13 (𝑠 = (𝑥𝑋) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠)) = Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))
467466oveq2d 6706 . . . . . . . . . . . 12 (𝑠 = (𝑥𝑋) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
468467oveq1d 6705 . . . . . . . . . . 11 (𝑠 = (𝑥𝑋) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
469468adantl 481 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑠 = (𝑥𝑋)) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
47058adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑋 ∈ ℝ)
471118, 470resubcld 10496 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝑥𝑋) ∈ ℝ)
472 halfre 11284 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
473472a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (1 / 2) ∈ ℝ)
474 fzfid 12812 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (1...𝑁) ∈ Fin)
475390an32s 863 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
476474, 475fsumrecl 14509 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
477473, 476readdcld 10107 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
47844a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → π ∈ ℝ)
47948a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → π ≠ 0)
480477, 478, 479redivcld 10891 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) ∈ ℝ)
481463, 469, 471, 480fvmptd 6327 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
482481, 480eqeltrd 2730 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
483119, 482remulcld 10108 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) ∈ ℝ)
484177a1i 11 . . . . . . . . . 10 (𝜑𝐶 ∈ V)
485 eqidd 2652 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
486 eqidd 2652 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
487484, 482, 119, 485, 486offval2 6956 . . . . . . . . 9 (𝜑 → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))))
488482recnd 10106 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℂ)
489488, 120mulcomd 10099 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥)) = ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))))
490489mpteq2dva 4777 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
491487, 490eqtr2d 2686 . . . . . . . 8 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) = ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
492 eqid 2651 . . . . . . . . . . 11 (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))
493 eqid 2651 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋)))
494194a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℂ ⊆ ℂ)
495 cncfss 22749 . . . . . . . . . . . . . 14 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
496189, 494, 495sylancr 696 . . . . . . . . . . . . 13 (𝜑 → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
497 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
49858adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝑋 ∈ ℝ)
499497, 498resubcld 10496 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑥𝑋) ∈ ℝ)
500 eqid 2651 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ ↦ (𝑥𝑋)) = (𝑥 ∈ ℝ ↦ (𝑥𝑋))
501499, 500fmptd 6425 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ)
502189a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℝ ⊆ ℂ)
503502, 494idcncfg 40403 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℂ))
504502, 365, 494constcncfg 40402 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℝ ↦ 𝑋) ∈ (ℝ–cn→ℂ))
505503, 504subcncf 40400 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℂ))
506 cncffvrn 22748 . . . . . . . . . . . . . . . 16 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℂ)) → ((𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ))
507189, 505, 506sylancr 696 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ))
508501, 507mpbird 247 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ))
509459dirkercncf 40642 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
5107, 509syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
511508, 510cncfcompt 40414 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (ℝ–cn→ℝ))
512496, 511sseldd 3637 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (ℝ–cn→ℂ))
51344renegcli 10380 . . . . . . . . . . . . . 14 -π ∈ ℝ
514 iccssre 12293 . . . . . . . . . . . . . 14 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
515513, 44, 514mp2an 708 . . . . . . . . . . . . 13 (-π[,]π) ⊆ ℝ
516515a1i 11 . . . . . . . . . . . 12 (𝜑 → (-π[,]π) ⊆ ℝ)
517459dirkerf 40632 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
5187, 517syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
519518adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
520516sselda 3636 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
52158adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
522520, 521resubcld 10496 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑥𝑋) ∈ ℝ)
523519, 522ffvelrnd 6400 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
524523recnd 10106 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℂ)
525493, 512, 516, 494, 524cncfmptssg 40401 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ ((-π[,]π)–cn→ℂ))
526132a1i 11 . . . . . . . . . . 11 (𝜑𝐶 ⊆ (-π[,]π))
527492, 525, 526, 494, 488cncfmptssg 40401 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (𝐶cn→ℂ))
528 cnmbf 23471 . . . . . . . . . 10 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn)
529176, 527, 528sylancr 696 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn)
530513a1i 11 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℝ)
531 0red 10079 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
532 negpilt0 39806 . . . . . . . . . . . . . . . 16 -π < 0
533532a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -π < 0)
53447a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < π)
535530, 531, 101, 533, 534lttrd 10236 . . . . . . . . . . . . . 14 (𝜑 → -π < π)
536530, 101, 535ltled 10223 . . . . . . . . . . . . 13 (𝜑 → -π ≤ π)
537493, 512, 516, 502, 523cncfmptssg 40401 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ ((-π[,]π)–cn→ℝ))
538530, 101, 536, 537evthiccabs 40036 . . . . . . . . . . . 12 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ∧ ∃𝑧 ∈ (-π[,]π)∀𝑤 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑧)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑤))))
539538simpld 474 . . . . . . . . . . 11 (𝜑 → ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)))
540 eqidd 2652 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))))
541420fveq2d 6233 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
542541adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (-π[,]π)) ∧ 𝑥 = 𝑦) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
543 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑦 ∈ (-π[,]π))
544518adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
545515, 543sseldi 3634 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑦 ∈ ℝ)
54658adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
547545, 546resubcld 10496 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (-π[,]π)) → (𝑦𝑋) ∈ ℝ)
548544, 547ffvelrnd 6400 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑦𝑋)) ∈ ℝ)
549540, 542, 543, 548fvmptd 6327 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (-π[,]π)) → ((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦) = ((𝐷𝑁)‘(𝑦𝑋)))
550549fveq2d 6233 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
551550adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
552 eqidd 2652 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))))
553 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → (𝑥𝑋) = (𝑐𝑋))
554553fveq2d 6233 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑐𝑋)))
555554adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑥 = 𝑐) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑐𝑋)))
556 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
557518adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
558515, 556sseldi 3634 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑐 ∈ ℝ)
55958adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
560558, 559resubcld 10496 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ (-π[,]π)) → (𝑐𝑋) ∈ ℝ)
561557, 560ffvelrnd 6400 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑐𝑋)) ∈ ℝ)
562552, 555, 556, 561fvmptd 6327 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐) = ((𝐷𝑁)‘(𝑐𝑋)))
563562fveq2d 6233 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) = (abs‘((𝐷𝑁)‘(𝑐𝑋))))
564563adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) = (abs‘((𝐷𝑁)‘(𝑐𝑋))))
565551, 564breq12d 4698 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → ((abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
566565ralbidva 3014 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π)) → (∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
567566rexbidva 3078 . . . . . . . . . . 11 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
568539, 567mpbid 222 . . . . . . . . . 10 (𝜑 → ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
569561recnd 10106 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑐𝑋)) ∈ ℂ)
570569abscld 14219 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (-π[,]π)) → (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ)
5715703adant3 1101 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ)
572 nfv 1883 . . . . . . . . . . . . . 14 𝑦𝜑
573 nfv 1883 . . . . . . . . . . . . . 14 𝑦 𝑐 ∈ (-π[,]π)
574 nfra1 2970 . . . . . . . . . . . . . 14 𝑦𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))
575572, 573, 574nf3an 1871 . . . . . . . . . . . . 13 𝑦(𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
576 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
577482ralrimiva 2995 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐶 ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
578 dmmptg 5670 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝐶 ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
579577, 578syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
580579adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
581576, 580eleqtrd 2732 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦𝐶)
5825813ad2antl1 1243 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦𝐶)
583 eqidd 2652 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
584541adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐶) ∧ 𝑥 = 𝑦) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
585 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → 𝑦𝐶)
586518adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝐶) → (𝐷𝑁):ℝ⟶ℝ)
587136, 585sseldi 3634 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝐶) → 𝑦 ∈ ℝ)
58858adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝐶) → 𝑋 ∈ ℝ)
589587, 588resubcld 10496 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝐶) → (𝑦𝑋) ∈ ℝ)
590586, 589ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → ((𝐷𝑁)‘(𝑦𝑋)) ∈ ℝ)
591583, 584, 585, 590fvmptd 6327 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝐶) → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦) = ((𝐷𝑁)‘(𝑦𝑋)))
592591fveq2d 6233 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
593592adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
594 simplr 807 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
595132sseli 3632 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐶𝑦 ∈ (-π[,]π))
596595adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → 𝑦 ∈ (-π[,]π))
597 rspa 2959 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
598594, 596, 597syl2anc 694 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
599593, 598eqbrtrd 4707 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
6005993adantl2 1238 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
601582, 600syldan 486 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
602601ex 449 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → (𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
603575, 602ralrimi 2986 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
604 breq2 4689 . . . . . . . . . . . . . 14 (𝑏 = (abs‘((𝐷𝑁)‘(𝑐𝑋))) → ((abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
605604ralbidv 3015 . . . . . . . . . . . . 13 (𝑏 = (abs‘((𝐷𝑁)‘(𝑐𝑋))) → (∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
606605rspcev 3340 . . . . . . . . . . . 12 (((abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
607571, 603, 606syl2anc 694 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
608607rexlimdv3a 3062 . . . . . . . . . 10 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏))
609568, 608mpd 15 . . . . . . . . 9 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
610 bddmulibl 23650 . . . . . . . . 9 (((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
611529, 140, 609, 610syl3anc 1366 . . . . . . . 8 (𝜑 → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
612491, 611eqeltrd 2730 . . . . . . 7 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) ∈ 𝐿1)
613142, 483, 612itgmulc2 23645 . . . . . 6 (𝜑 → (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) = ∫𝐶(π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) d𝑥)
614142adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → π ∈ ℂ)
615120, 488, 614mul13d 39805 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (π · (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))))
616489oveq2d 6706 . . . . . . . 8 ((𝜑𝑥𝐶) → (π · (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))) = (π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
617615, 616eqtrd 2685 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
618617itgeq2dv 23593 . . . . . 6 (𝜑 → ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥 = ∫𝐶(π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) d𝑥)
619613, 618eqtr4d 2688 . . . . 5 (𝜑 → (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) = ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥)
620148adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → (1 / 2) ∈ ℂ)
621620, 120mulcomd 10099 . . . . . . . 8 ((𝜑𝑥𝐶) → ((1 / 2) · (𝐹𝑥)) = ((𝐹𝑥) · (1 / 2)))
622396an32s 863 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
623474, 120, 622fsummulc2 14560 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) = Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))))
624623eqcomd 2657 . . . . . . . 8 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
625621, 624oveq12d 6708 . . . . . . 7 ((𝜑𝑥𝐶) → (((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) = (((𝐹𝑥) · (1 / 2)) + ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))))
626474, 622fsumcl 14508 . . . . . . . 8 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
627120, 620, 626adddid 10102 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))) = (((𝐹𝑥) · (1 / 2)) + ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))))
628481oveq1d 6705 . . . . . . . . 9 ((𝜑𝑥𝐶) → (((𝐷𝑁)‘(𝑥𝑋)) · π) = ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) · π))
629620, 626addcld 10097 . . . . . . . . . 10 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) ∈ ℂ)
630629, 614, 479divcan1d 10840 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) · π) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
631628, 630eqtr2d 2686 . . . . . . . 8 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) = (((𝐷𝑁)‘(𝑥𝑋)) · π))
632631oveq2d 6706 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))) = ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)))
633625, 627, 6323eqtr2rd 2692 . . . . . 6 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))))
634633itgeq2dv 23593 . . . . 5 (𝜑 → ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥 = ∫𝐶(((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) d𝑥)
635 remulcl 10059 . . . . . . 7 (((1 / 2) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → ((1 / 2) · (𝐹𝑥)) ∈ ℝ)
636472, 119, 635sylancr 696 . . . . . 6 ((𝜑𝑥𝐶) → ((1 / 2) · (𝐹𝑥)) ∈ ℝ)
637148, 119, 140iblmulc2 23642 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ ((1 / 2) · (𝐹𝑥))) ∈ 𝐿1)
638391an32s 863 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
639474, 638fsumrecl 14509 . . . . . 6 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
640453simpld 474 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1)
641636, 637, 639, 640itgadd 23636 . . . . 5 (𝜑 → ∫𝐶(((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) d𝑥 = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥))
642619, 634, 6413eqtrrd 2690 . . . 4 (𝜑 → (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) = (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥))
643642oveq1d 6705 . . 3 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) / π) = ((π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) / π))
644636, 637itgcl 23595 . . . 4 (𝜑 → ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 ∈ ℂ)
645639, 640itgcl 23595 . . . 4 (𝜑 → ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 ∈ ℂ)
646644, 645, 142, 102divdird 10877 . . 3 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) / π) = ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)))
647483, 612itgcl 23595 . . . 4 (𝜑 → ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥 ∈ ℂ)
648647, 142, 102divcan3d 10844 . . 3 (𝜑 → ((π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) / π) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
649643, 646, 6483eqtr3d 2693 . 2 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
65090, 458, 6493eqtrd 2689 1 (𝜑 → (𝑆𝑁) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762  dom cdm 5143  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  (,)cioo 12213  [,]cicc 12216  ...cfz 12364   mod cmo 12708  abscabs 14018  Σcsu 14460  sincsin 14838  cosccos 14839  πcpi 14841  cnccncf 22726  volcvol 23278  MblFncmbf 23428  𝐿1cibl 23431  citg 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-t1 21166  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435  df-ibl 23436  df-itg 23437  df-0p 23482  df-limc 23675  df-dv 23676
This theorem is referenced by:  fourierdlem111  40752
  Copyright terms: Public domain W3C validator