Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem66 Structured version   Visualization version   GIF version

Theorem fourierdlem66 40911
Description: Value of the 𝐺 function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem66.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem66.x (𝜑𝑋 ∈ ℝ)
fourierdlem66.y (𝜑𝑌 ∈ ℝ)
fourierdlem66.w (𝜑𝑊 ∈ ℝ)
fourierdlem66.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem66.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem66.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem66.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem66.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem66.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem66.a 𝐴 = ((-π[,]π) ∖ {0})
Assertion
Ref Expression
fourierdlem66 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Distinct variable groups:   𝑛,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛,𝑠)   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑈(𝑛,𝑠)   𝐹(𝑛,𝑠)   𝐺(𝑛,𝑠)   𝐻(𝑛,𝑠)   𝐾(𝑛,𝑠)   𝑊(𝑛,𝑠)   𝑋(𝑛,𝑠)   𝑌(𝑛,𝑠)

Proof of Theorem fourierdlem66
StepHypRef Expression
1 fourierdlem66.a . . . . . . . 8 𝐴 = ((-π[,]π) ∖ {0})
21eqimssi 3801 . . . . . . 7 𝐴 ⊆ ((-π[,]π) ∖ {0})
3 difss 3881 . . . . . . 7 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
42, 3sstri 3754 . . . . . 6 𝐴 ⊆ (-π[,]π)
54a1i 11 . . . . 5 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3745 . . . 4 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
76adantlr 753 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
8 fourierdlem66.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
98adantr 472 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
10 fourierdlem66.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1110adantr 472 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
12 fourierdlem66.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
1312adantr 472 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
14 fourierdlem66.w . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
1514adantr 472 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
16 fourierdlem66.h . . . . . . 7 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
17 fourierdlem66.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
18 fourierdlem66.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
199, 11, 13, 15, 16, 17, 18fourierdlem55 40900 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑈:(-π[,]π)⟶ℝ)
2019adantr 472 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑈:(-π[,]π)⟶ℝ)
2120, 7ffvelrnd 6525 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) ∈ ℝ)
22 nnre 11240 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
23 fourierdlem66.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2423fourierdlem5 40851 . . . . . . 7 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
2522, 24syl 17 . . . . . 6 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
2625ad2antlr 765 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑆:(-π[,]π)⟶ℝ)
2726, 7ffvelrnd 6525 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) ∈ ℝ)
2821, 27remulcld 10283 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
29 fourierdlem66.g . . . 4 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3029fvmpt2 6455 . . 3 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
317, 28, 30syl2anc 696 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
328, 10, 12, 14, 16fourierdlem9 40855 . . . . . . . . 9 (𝜑𝐻:(-π[,]π)⟶ℝ)
3332adantr 472 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐻:(-π[,]π)⟶ℝ)
3433, 6ffvelrnd 6525 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) ∈ ℝ)
3517fourierdlem43 40889 . . . . . . . . 9 𝐾:(-π[,]π)⟶ℝ
3635a1i 11 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐾:(-π[,]π)⟶ℝ)
3736, 6ffvelrnd 6525 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) ∈ ℝ)
3834, 37remulcld 10283 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
3918fvmpt2 6455 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
406, 38, 39syl2anc 696 . . . . 5 ((𝜑𝑠𝐴) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
41 0red 10254 . . . . . . . . 9 ((𝜑𝑠𝐴) → 0 ∈ ℝ)
428adantr 472 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
4310adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
44 pire 24431 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
4544renegcli 10555 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
46 iccssre 12469 . . . . . . . . . . . . . . . 16 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4745, 44, 46mp2an 710 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℝ
484sseli 3741 . . . . . . . . . . . . . . 15 (𝑠𝐴𝑠 ∈ (-π[,]π))
4947, 48sseldi 3743 . . . . . . . . . . . . . 14 (𝑠𝐴𝑠 ∈ ℝ)
5049adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
5143, 50readdcld 10282 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
5242, 51ffvelrnd 6525 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
5312, 14ifcld 4276 . . . . . . . . . . . 12 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5453adantr 472 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5552, 54resubcld 10671 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
56 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐴) → 𝑠𝐴)
572, 56sseldi 3743 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
5857eldifbd 3729 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → ¬ 𝑠 ∈ {0})
59 velsn 4338 . . . . . . . . . . . 12 (𝑠 ∈ {0} ↔ 𝑠 = 0)
6058, 59sylnib 317 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
6160neqned 2940 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
6255, 50, 61redivcld 11066 . . . . . . . . 9 ((𝜑𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℝ)
6341, 62ifcld 4276 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
6416fvmpt2 6455 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
656, 63, 64syl2anc 696 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6660iffalsed 4242 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
6765, 66eqtrd 2795 . . . . . 6 ((𝜑𝑠𝐴) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
68 1red 10268 . . . . . . . . 9 ((𝜑𝑠𝐴) → 1 ∈ ℝ)
69 2re 11303 . . . . . . . . . . . 12 2 ∈ ℝ
7069a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
7150rehalfcld 11492 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
7271resincld 15093 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
7370, 72remulcld 10283 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
74 2cnd 11306 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
7572recnd 10281 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
76 2ne0 11326 . . . . . . . . . . . 12 2 ≠ 0
7776a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ≠ 0)
78 fourierdlem44 40890 . . . . . . . . . . . 12 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
796, 61, 78syl2anc 696 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
8074, 75, 77, 79mulne0d 10892 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
8150, 73, 80redivcld 11066 . . . . . . . . 9 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
8268, 81ifcld 4276 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
8317fvmpt2 6455 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
846, 82, 83syl2anc 696 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8560iffalsed 4242 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8684, 85eqtrd 2795 . . . . . 6 ((𝜑𝑠𝐴) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8767, 86oveq12d 6833 . . . . 5 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8855recnd 10281 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
8950recnd 10281 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
9074, 75mulcld 10273 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
9188, 89, 90, 61, 80dmdcan2d 11044 . . . . 5 ((𝜑𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9240, 87, 913eqtrd 2799 . . . 4 ((𝜑𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9392adantlr 753 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9422ad2antlr 765 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
95 1red 10268 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 1 ∈ ℝ)
9695rehalfcld 11492 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
9794, 96readdcld 10282 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
9849adantl 473 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
9997, 98remulcld 10283 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
10099resincld 15093 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
10123fvmpt2 6455 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
1027, 100, 101syl2anc 696 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
10393, 102oveq12d 6833 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
10488adantlr 753 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
10590adantlr 753 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
106100recnd 10281 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
10780adantlr 753 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
108104, 105, 106, 107div32d 11037 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))))
10922adantr 472 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
110 halfre 11459 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
111110a1i 11 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
112109, 111readdcld 10282 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
11349adantl 473 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
114112, 113remulcld 10283 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
115114resincld 15093 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
116115recnd 10281 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
11769a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℝ)
118113rehalfcld 11492 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
119118resincld 15093 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
120117, 119remulcld 10283 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
121120recnd 10281 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
122 picn 24432 . . . . . . . . . 10 π ∈ ℂ
123122a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ∈ ℂ)
124 2cnd 11306 . . . . . . . . . . 11 (𝑠𝐴 → 2 ∈ ℂ)
125 rehalfcl 11471 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℝ)
126 resincl 15090 . . . . . . . . . . . . 13 ((𝑠 / 2) ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℝ)
12749, 125, 1263syl 18 . . . . . . . . . . . 12 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℝ)
128127recnd 10281 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℂ)
12976a1i 11 . . . . . . . . . . 11 (𝑠𝐴 → 2 ≠ 0)
130 eldifsni 4467 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ≠ 0)
131130, 1eleq2s 2858 . . . . . . . . . . . 12 (𝑠𝐴𝑠 ≠ 0)
13248, 131, 78syl2anc 696 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ≠ 0)
133124, 128, 129, 132mulne0d 10892 . . . . . . . . . 10 (𝑠𝐴 → (2 · (sin‘(𝑠 / 2))) ≠ 0)
134133adantl 473 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
135 0re 10253 . . . . . . . . . . 11 0 ∈ ℝ
136 pipos 24433 . . . . . . . . . . 11 0 < π
137135, 136gtneii 10362 . . . . . . . . . 10 π ≠ 0
138137a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ≠ 0)
139116, 121, 123, 134, 138divdiv1d 11045 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)))
140 2cnd 11306 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℂ)
141128adantl 473 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
142140, 141, 123mulassd 10276 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) · π) = (2 · ((sin‘(𝑠 / 2)) · π)))
143142oveq2d 6831 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))))
144141, 123mulcomd 10274 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘(𝑠 / 2)) · π) = (π · (sin‘(𝑠 / 2))))
145144oveq2d 6831 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = (2 · (π · (sin‘(𝑠 / 2)))))
146140, 123, 141mulassd 10276 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · π) · (sin‘(𝑠 / 2))) = (2 · (π · (sin‘(𝑠 / 2)))))
147145, 146eqtr4d 2798 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = ((2 · π) · (sin‘(𝑠 / 2))))
148147oveq2d 6831 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
149139, 143, 1483eqtrd 2799 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
150149oveq2d 6831 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
151115, 120, 134redivcld 11066 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
152151recnd 10281 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
153152, 123, 138divcan2d 11016 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))))
154 fourierdlem66.d . . . . . . . . . 10 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
155154dirkerval2 40833 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
15649, 155sylan2 492 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
157 fourierdlem24 40870 . . . . . . . . . . . 12 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 mod (2 · π)) ≠ 0)
158157, 1eleq2s 2858 . . . . . . . . . . 11 (𝑠𝐴 → (𝑠 mod (2 · π)) ≠ 0)
159158neneqd 2938 . . . . . . . . . 10 (𝑠𝐴 → ¬ (𝑠 mod (2 · π)) = 0)
160159adantl 473 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ¬ (𝑠 mod (2 · π)) = 0)
161160iffalsed 4242 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
162156, 161eqtr2d 2796 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((𝐷𝑛)‘𝑠))
163162oveq2d 6831 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (π · ((𝐷𝑛)‘𝑠)))
164150, 153, 1633eqtr3d 2803 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) = (π · ((𝐷𝑛)‘𝑠)))
165164oveq2d 6831 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
166165adantll 752 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
167122a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
168154dirkerre 40834 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
16949, 168sylan2 492 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
170169recnd 10281 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
171170adantll 752 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
172104, 167, 171mul12d 10458 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
173108, 166, 1723eqtrd 2799 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
17431, 103, 1733eqtrd 2799 1 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2140  wne 2933  cdif 3713  wss 3716  ifcif 4231  {csn 4322   class class class wbr 4805  cmpt 4882  wf 6046  cfv 6050  (class class class)co 6815  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154   < clt 10287  cmin 10479  -cneg 10480   / cdiv 10897  cn 11233  2c2 11283  [,]cicc 12392   mod cmo 12883  sincsin 15014  πcpi 15017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-fac 13276  df-bc 13305  df-hash 13333  df-shft 14027  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-limsup 14422  df-clim 14439  df-rlim 14440  df-sum 14637  df-ef 15018  df-sin 15020  df-cos 15021  df-pi 15023  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-fbas 19966  df-fg 19967  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-nei 21125  df-lp 21163  df-perf 21164  df-cn 21254  df-cnp 21255  df-haus 21342  df-tx 21588  df-hmeo 21781  df-fil 21872  df-fm 21964  df-flim 21965  df-flf 21966  df-xms 22347  df-ms 22348  df-tms 22349  df-cncf 22903  df-limc 23850  df-dv 23851
This theorem is referenced by:  fourierdlem95  40940
  Copyright terms: Public domain W3C validator