Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem63 Structured version   Visualization version   GIF version

Theorem fourierdlem63 40704
 Description: The upper bound of intervals in the moved partition are mapped to points that are not greater than the corresponding upper bounds in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem63.t 𝑇 = (𝐵𝐴)
fourierdlem63.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem63.m (𝜑𝑀 ∈ ℕ)
fourierdlem63.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem63.c (𝜑𝐶 ∈ ℝ)
fourierdlem63.d (𝜑𝐷 ∈ ℝ)
fourierdlem63.cltd (𝜑𝐶 < 𝐷)
fourierdlem63.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem63.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem63.n 𝑁 = ((#‘𝐻) − 1)
fourierdlem63.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem63.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem63.k (𝜑𝐾 ∈ (0...𝑀))
fourierdlem63.j (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem63.y (𝜑𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))))
fourierdlem63.eyltqk (𝜑 → (𝐸𝑌) < (𝑄𝐾))
fourierdlem63.x 𝑋 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌))
Assertion
Ref Expression
fourierdlem63 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄𝐾))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑚,𝑝   𝑥,𝐵   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑘,𝐸,𝑥   𝑓,𝐻   𝑥,𝐻   𝑘,𝐽,𝑥   𝑘,𝐾,𝑥   𝑖,𝑀,𝑚,𝑝   𝑓,𝑁   𝑖,𝑁,𝑚,𝑝   𝑥,𝑁   𝑄,𝑖,𝑘,𝑥   𝑄,𝑝   𝑆,𝑓   𝑆,𝑖,𝑘,𝑥   𝑆,𝑝   𝑇,𝑖,𝑘,𝑥   𝑘,𝑌,𝑥   𝜑,𝑓   𝜑,𝑖,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑓,𝑘)   𝐵(𝑓,𝑘)   𝐶(𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑃(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑓,𝑚)   𝑆(𝑚)   𝑇(𝑓,𝑚,𝑝)   𝐸(𝑓,𝑖,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐽(𝑓,𝑖,𝑚,𝑝)   𝐾(𝑓,𝑖,𝑚,𝑝)   𝑀(𝑥,𝑓,𝑘)   𝑁(𝑘)   𝑂(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑌(𝑓,𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem63
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem63.e . . . . 5 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
21a1i 11 . . . 4 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
3 id 22 . . . . . 6 (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1)))
4 oveq2 6698 . . . . . . . . 9 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵𝑥) = (𝐵 − (𝑆‘(𝐽 + 1))))
54oveq1d 6705 . . . . . . . 8 (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))
65fveq2d 6233 . . . . . . 7 (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
76oveq1d 6705 . . . . . 6 (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
83, 7oveq12d 6708 . . . . 5 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
98adantl 481 . . . 4 ((𝜑𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
10 fourierdlem63.t . . . . . . . . . . 11 𝑇 = (𝐵𝐴)
11 fourierdlem63.p . . . . . . . . . . 11 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
12 fourierdlem63.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
13 fourierdlem63.q . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑃𝑀))
14 fourierdlem63.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
15 fourierdlem63.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
16 fourierdlem63.cltd . . . . . . . . . . 11 (𝜑𝐶 < 𝐷)
17 fourierdlem63.o . . . . . . . . . . 11 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
18 fourierdlem63.h . . . . . . . . . . 11 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
19 fourierdlem63.n . . . . . . . . . . 11 𝑁 = ((#‘𝐻) − 1)
20 fourierdlem63.s . . . . . . . . . . 11 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20fourierdlem54 40695 . . . . . . . . . 10 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
2221simpld 474 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
2322simprd 478 . . . . . . . 8 (𝜑𝑆 ∈ (𝑂𝑁))
2422simpld 474 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
2517fourierdlem2 40644 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
2624, 25syl 17 . . . . . . . 8 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
2723, 26mpbid 222 . . . . . . 7 (𝜑 → (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
2827simpld 474 . . . . . 6 (𝜑𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)))
29 elmapi 7921 . . . . . 6 (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ)
3028, 29syl 17 . . . . 5 (𝜑𝑆:(0...𝑁)⟶ℝ)
31 fourierdlem63.j . . . . . 6 (𝜑𝐽 ∈ (0..^𝑁))
32 fzofzp1 12605 . . . . . 6 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
3331, 32syl 17 . . . . 5 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
3430, 33ffvelrnd 6400 . . . 4 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
3511, 12, 13fourierdlem11 40653 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
3635simp2d 1094 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
3736, 34resubcld 10496 . . . . . . . . 9 (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ)
3835simp1d 1093 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3936, 38resubcld 10496 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
4010, 39syl5eqel 2734 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
4135simp3d 1095 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
4238, 36posdifd 10652 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4341, 42mpbid 222 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
4443, 10syl6breqr 4727 . . . . . . . . . 10 (𝜑 → 0 < 𝑇)
4544gt0ne0d 10630 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
4637, 40, 45redivcld 10891 . . . . . . . 8 (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ)
4746flcld 12639 . . . . . . 7 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ)
4847zred 11520 . . . . . 6 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ)
4948, 40remulcld 10108 . . . . 5 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ)
5034, 49readdcld 10107 . . . 4 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ)
512, 9, 34, 50fvmptd 6327 . . 3 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
5251, 50eqeltrd 2730 . 2 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
5311fourierdlem2 40644 . . . . . . 7 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
5412, 53syl 17 . . . . . 6 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
5513, 54mpbid 222 . . . . 5 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
5655simpld 474 . . . 4 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
57 elmapi 7921 . . . 4 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
5856, 57syl 17 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
59 fourierdlem63.k . . 3 (𝜑𝐾 ∈ (0...𝑀))
6058, 59ffvelrnd 6400 . 2 (𝜑 → (𝑄𝐾) ∈ ℝ)
6114adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐶 ∈ ℝ)
6215adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐷 ∈ ℝ)
6338rexrd 10127 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
64 iocssre 12291 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
6563, 36, 64syl2anc 694 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
6638, 36, 41, 10, 1fourierdlem4 40646 . . . . . . . . . . . 12 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
67 fourierdlem63.y . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))))
68 elfzofz 12524 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
6931, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ (0...𝑁))
7030, 69ffvelrnd 6400 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆𝐽) ∈ ℝ)
7134rexrd 10127 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ*)
72 elico2 12275 . . . . . . . . . . . . . . 15 (((𝑆𝐽) ∈ ℝ ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ*) → (𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ↔ (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1)))))
7370, 71, 72syl2anc 694 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ↔ (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1)))))
7467, 73mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1))))
7574simp1d 1093 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
7666, 75ffvelrnd 6400 . . . . . . . . . . 11 (𝜑 → (𝐸𝑌) ∈ (𝐴(,]𝐵))
7765, 76sseldd 3637 . . . . . . . . . 10 (𝜑 → (𝐸𝑌) ∈ ℝ)
7877, 75resubcld 10496 . . . . . . . . 9 (𝜑 → ((𝐸𝑌) − 𝑌) ∈ ℝ)
7960, 78resubcld 10496 . . . . . . . 8 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ℝ)
8079adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ℝ)
81 icossicc 12298 . . . . . . . . . . . . . 14 ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑆𝐽)[,](𝑆‘(𝐽 + 1)))
8214rexrd 10127 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ*)
8315rexrd 10127 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ*)
8417, 24, 23fourierdlem15 40657 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
8582, 83, 84, 31fourierdlem8 40650 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆𝐽)[,](𝑆‘(𝐽 + 1))) ⊆ (𝐶[,]𝐷))
8681, 85syl5ss 3647 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ⊆ (𝐶[,]𝐷))
8786, 67sseldd 3637 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝐶[,]𝐷))
88 elicc2 12276 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑌 ∈ (𝐶[,]𝐷) ↔ (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷)))
8914, 15, 88syl2anc 694 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (𝐶[,]𝐷) ↔ (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷)))
9087, 89mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷))
9190simp2d 1094 . . . . . . . . . 10 (𝜑𝐶𝑌)
9260, 77resubcld 10496 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐾) − (𝐸𝑌)) ∈ ℝ)
93 fourierdlem63.eyltqk . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝑌) < (𝑄𝐾))
9477, 60posdifd 10652 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸𝑌) < (𝑄𝐾) ↔ 0 < ((𝑄𝐾) − (𝐸𝑌))))
9593, 94mpbid 222 . . . . . . . . . . . . 13 (𝜑 → 0 < ((𝑄𝐾) − (𝐸𝑌)))
9692, 95elrpd 11907 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝐾) − (𝐸𝑌)) ∈ ℝ+)
9775, 96ltaddrpd 11943 . . . . . . . . . . 11 (𝜑𝑌 < (𝑌 + ((𝑄𝐾) − (𝐸𝑌))))
9860recnd 10106 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝐾) ∈ ℂ)
9977recnd 10106 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑌) ∈ ℂ)
10075recnd 10106 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℂ)
10198, 99, 100subsub3d 10460 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) = (((𝑄𝐾) + 𝑌) − (𝐸𝑌)))
10298, 100addcomd 10276 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐾) + 𝑌) = (𝑌 + (𝑄𝐾)))
103102oveq1d 6705 . . . . . . . . . . . 12 (𝜑 → (((𝑄𝐾) + 𝑌) − (𝐸𝑌)) = ((𝑌 + (𝑄𝐾)) − (𝐸𝑌)))
104100, 98, 99addsubassd 10450 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + (𝑄𝐾)) − (𝐸𝑌)) = (𝑌 + ((𝑄𝐾) − (𝐸𝑌))))
105101, 103, 1043eqtrrd 2690 . . . . . . . . . . 11 (𝜑 → (𝑌 + ((𝑄𝐾) − (𝐸𝑌))) = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10697, 105breqtrd 4711 . . . . . . . . . 10 (𝜑𝑌 < ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10714, 75, 79, 91, 106lelttrd 10233 . . . . . . . . 9 (𝜑𝐶 < ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10814, 79, 107ltled 10223 . . . . . . . 8 (𝜑𝐶 ≤ ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
109108adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐶 ≤ ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
11034adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈ ℝ)
11160adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) ∈ ℝ)
11252, 34resubcld 10496 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℝ)
113112adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℝ)
114111, 113resubcld 10496 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) ∈ ℝ)
11574simp3d 1095 . . . . . . . . . . . . . 14 (𝜑𝑌 < (𝑆‘(𝐽 + 1)))
11675, 34, 115ltled 10223 . . . . . . . . . . . . 13 (𝜑𝑌 ≤ (𝑆‘(𝐽 + 1)))
11738, 36, 41, 10, 1, 75, 34, 116fourierdlem7 40649 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ≤ ((𝐸𝑌) − 𝑌))
118112, 78, 60, 117lesub2dd 10682 . . . . . . . . . . 11 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))))
119118adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))))
12098adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) ∈ ℂ)
12152recnd 10106 . . . . . . . . . . . . . 14 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
122121adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
123110recnd 10106 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈ ℂ)
124120, 122, 123subsubd 10458 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) = (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))))
12598, 121subcld 10430 . . . . . . . . . . . . . 14 (𝜑 → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℂ)
12634recnd 10106 . . . . . . . . . . . . . 14 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ)
127125, 126addcomd 10276 . . . . . . . . . . . . 13 (𝜑 → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
128127adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
129124, 128eqtrd 2685 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
130 simpr 476 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1))))
13152adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
132111, 131sublt0d 10691 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))))
133130, 132mpbird 247 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0)
134111, 131resubcld 10496 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ)
135 ltaddneg 10289 . . . . . . . . . . . . 13 ((((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1))))
136134, 110, 135syl2anc 694 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1))))
137133, 136mpbid 222 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1)))
138129, 137eqbrtrd 4707 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) < (𝑆‘(𝐽 + 1)))
13980, 114, 110, 119, 138lelttrd 10233 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) < (𝑆‘(𝐽 + 1)))
14084, 33ffvelrnd 6400 . . . . . . . . . . . 12 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷))
141 elicc2 12276 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷)))
14214, 15, 141syl2anc 694 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷)))
143140, 142mpbid 222 . . . . . . . . . . 11 (𝜑 → ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷))
144143simp3d 1095 . . . . . . . . . 10 (𝜑 → (𝑆‘(𝐽 + 1)) ≤ 𝐷)
145144adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ≤ 𝐷)
14680, 110, 62, 139, 145ltletrd 10235 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) < 𝐷)
14780, 62, 146ltled 10223 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ 𝐷)
14861, 62, 80, 109, 147eliccd 40044 . . . . . 6 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ (𝐶[,]𝐷))
149 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌𝑥 = 𝑌)
150 oveq2 6698 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑌 → (𝐵𝑥) = (𝐵𝑌))
151150oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑌 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
152151fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
153152oveq1d 6705 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
154149, 153oveq12d 6708 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
155154adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
15636, 75resubcld 10496 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵𝑌) ∈ ℝ)
157156, 40, 45redivcld 10891 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
158157flcld 12639 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
159158zred 11520 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
160159, 40remulcld 10108 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
16175, 160readdcld 10107 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
1622, 155, 75, 161fvmptd 6327 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
163162oveq1d 6705 . . . . . . . . . . 11 (𝜑 → ((𝐸𝑌) − 𝑌) = ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌))
164163oveq1d 6705 . . . . . . . . . 10 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) = (((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) / 𝑇))
165160recnd 10106 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℂ)
166100, 165pncan2d 10432 . . . . . . . . . . 11 (𝜑 → ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
167166oveq1d 6705 . . . . . . . . . 10 (𝜑 → (((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) / 𝑇) = (((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) / 𝑇))
168159recnd 10106 . . . . . . . . . . 11 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℂ)
16940recnd 10106 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
170168, 169, 45divcan4d 10845 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑌) / 𝑇)))
171164, 167, 1703eqtrd 2689 . . . . . . . . 9 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) = (⌊‘((𝐵𝑌) / 𝑇)))
172171, 158eqeltrd 2730 . . . . . . . 8 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) ∈ ℤ)
17378recnd 10106 . . . . . . . . . . . 12 (𝜑 → ((𝐸𝑌) − 𝑌) ∈ ℂ)
174173, 169, 45divcan1d 10840 . . . . . . . . . . 11 (𝜑 → ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇) = ((𝐸𝑌) − 𝑌))
175174oveq2d 6706 . . . . . . . . . 10 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((𝐸𝑌) − 𝑌)))
17698, 173npcand 10434 . . . . . . . . . 10 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((𝐸𝑌) − 𝑌)) = (𝑄𝐾))
177175, 176eqtrd 2685 . . . . . . . . 9 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) = (𝑄𝐾))
178 ffun 6086 . . . . . . . . . . 11 (𝑄:(0...𝑀)⟶ℝ → Fun 𝑄)
17958, 178syl 17 . . . . . . . . . 10 (𝜑 → Fun 𝑄)
180 fdm 6089 . . . . . . . . . . . 12 (𝑄:(0...𝑀)⟶ℝ → dom 𝑄 = (0...𝑀))
18158, 180syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝑄 = (0...𝑀))
18259, 181eleqtrrd 2733 . . . . . . . . . 10 (𝜑𝐾 ∈ dom 𝑄)
183 fvelrn 6392 . . . . . . . . . 10 ((Fun 𝑄𝐾 ∈ dom 𝑄) → (𝑄𝐾) ∈ ran 𝑄)
184179, 182, 183syl2anc 694 . . . . . . . . 9 (𝜑 → (𝑄𝐾) ∈ ran 𝑄)
185177, 184eqeltrd 2730 . . . . . . . 8 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄)
186 oveq1 6697 . . . . . . . . . . 11 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → (𝑘 · 𝑇) = ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇))
187186oveq2d 6706 . . . . . . . . . 10 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)))
188187eleq1d 2715 . . . . . . . . 9 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → ((((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄))
189188rspcev 3340 . . . . . . . 8 (((((𝐸𝑌) − 𝑌) / 𝑇) ∈ ℤ ∧ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄) → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
190172, 185, 189syl2anc 694 . . . . . . 7 (𝜑 → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
191190adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
192 oveq1 6697 . . . . . . . . 9 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → (𝑥 + (𝑘 · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)))
193192eleq1d 2715 . . . . . . . 8 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
194193rexbidv 3081 . . . . . . 7 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
195194elrab 3396 . . . . . 6 (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ (𝐶[,]𝐷) ∧ ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
196148, 191, 195sylanbrc 699 . . . . 5 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
197 elun2 3814 . . . . 5 (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
198196, 197syl 17 . . . 4 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
199 fourierdlem63.x . . . 4 𝑋 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌))
200198, 199, 183eltr4g 2747 . . 3 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑋𝐻)
201 elfzelz 12380 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
202201ad2antlr 763 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝑗 ∈ ℤ)
203 elfzoelz 12509 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
20431, 203syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
205204ad2antrr 762 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝐽 ∈ ℤ)
206 simpr 476 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → (𝑆𝐽) < (𝑆𝑗))
20721simprd 478 . . . . . . . . . . . . 13 (𝜑𝑆 Isom < , < ((0...𝑁), 𝐻))
208207ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝐻))
20969ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝐽 ∈ (0...𝑁))
210 simplr 807 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝑗 ∈ (0...𝑁))
211 isorel 6616 . . . . . . . . . . . 12 ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (𝐽 < 𝑗 ↔ (𝑆𝐽) < (𝑆𝑗)))
212208, 209, 210, 211syl12anc 1364 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → (𝐽 < 𝑗 ↔ (𝑆𝐽) < (𝑆𝑗)))
213206, 212mpbird 247 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝐽 < 𝑗)
214213adantrr 753 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝐽 < 𝑗)
215 simpr 476 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
216207ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑆 Isom < , < ((0...𝑁), 𝐻))
217 simplr 807 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑗 ∈ (0...𝑁))
21833ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝐽 + 1) ∈ (0...𝑁))
219 isorel 6616 . . . . . . . . . . . 12 ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝑗 < (𝐽 + 1) ↔ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
220216, 217, 218, 219syl12anc 1364 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝑗 < (𝐽 + 1) ↔ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
221215, 220mpbird 247 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑗 < (𝐽 + 1))
222221adantrl 752 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝑗 < (𝐽 + 1))
223 btwnnz 11491 . . . . . . . . 9 ((𝐽 ∈ ℤ ∧ 𝐽 < 𝑗𝑗 < (𝐽 + 1)) → ¬ 𝑗 ∈ ℤ)
224205, 214, 222, 223syl3anc 1366 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → ¬ 𝑗 ∈ ℤ)
225202, 224pm2.65da 599 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → ¬ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
226225adantlr 751 . . . . . 6 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) → ¬ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
22770ad2antrr 762 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) ∈ ℝ)
22875ad2antrr 762 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → 𝑌 ∈ ℝ)
22930ffvelrnda 6399 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑆𝑗) ∈ ℝ)
230229adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) ∈ ℝ)
23174simp2d 1094 . . . . . . . . . 10 (𝜑 → (𝑆𝐽) ≤ 𝑌)
232231ad2antrr 762 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) ≤ 𝑌)
233106, 199syl6breqr 4727 . . . . . . . . . . . 12 (𝜑𝑌 < 𝑋)
234233adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑌 < 𝑋)
235 eqcom 2658 . . . . . . . . . . . . 13 (𝑋 = (𝑆𝑗) ↔ (𝑆𝑗) = 𝑋)
236235biimpri 218 . . . . . . . . . . . 12 ((𝑆𝑗) = 𝑋𝑋 = (𝑆𝑗))
237236adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑋 = (𝑆𝑗))
238234, 237breqtrd 4711 . . . . . . . . . 10 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑌 < (𝑆𝑗))
239238adantlr 751 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → 𝑌 < (𝑆𝑗))
240227, 228, 230, 232, 239lelttrd 10233 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) < (𝑆𝑗))
241240adantllr 755 . . . . . . 7 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) < (𝑆𝑗))
242 simpr 476 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) = 𝑋)
243199, 139syl5eqbr 4720 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑋 < (𝑆‘(𝐽 + 1)))
244243adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → 𝑋 < (𝑆‘(𝐽 + 1)))
245242, 244eqbrtrd 4707 . . . . . . . 8 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
246245adantlr 751 . . . . . . 7 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
247241, 246jca 553 . . . . . 6 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
248226, 247mtand 692 . . . . 5 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) → ¬ (𝑆𝑗) = 𝑋)
249248nrexdv 3030 . . . 4 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ¬ ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
250 isof1o 6613 . . . . . . . . 9 (𝑆 Isom < , < ((0...𝑁), 𝐻) → 𝑆:(0...𝑁)–1-1-onto𝐻)
251207, 250syl 17 . . . . . . . 8 (𝜑𝑆:(0...𝑁)–1-1-onto𝐻)
252 f1ofo 6182 . . . . . . . 8 (𝑆:(0...𝑁)–1-1-onto𝐻𝑆:(0...𝑁)–onto𝐻)
253251, 252syl 17 . . . . . . 7 (𝜑𝑆:(0...𝑁)–onto𝐻)
254 foelrn 6418 . . . . . . 7 ((𝑆:(0...𝑁)–onto𝐻𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗))
255253, 254sylan 487 . . . . . 6 ((𝜑𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗))
256235rexbii 3070 . . . . . 6 (∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗) ↔ ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
257255, 256sylib 208 . . . . 5 ((𝜑𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
258257adantlr 751 . . . 4 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
259249, 258mtand 692 . . 3 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ¬ 𝑋𝐻)
260200, 259pm2.65da 599 . 2 (𝜑 → ¬ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1))))
26152, 60, 260nltled 10225 1 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄𝐾))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  {crab 2945   ∪ cun 3605   ⊆ wss 3607  {cpr 4212   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143  ran crn 5144  ℩cio 5887  Fun wfun 5920  ⟶wf 5922  –onto→wfo 5924  –1-1-onto→wf1o 5925  ‘cfv 5926   Isom wiso 5927  (class class class)co 6690   ↑𝑚 cmap 7899  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  ℕcn 11058  ℤcz 11415  (,]cioc 12214  [,)cico 12215  [,]cicc 12216  ...cfz 12364  ..^cfzo 12504  ⌊cfl 12631  #chash 13157 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-cmp 21238 This theorem is referenced by:  fourierdlem79  40720
 Copyright terms: Public domain W3C validator