Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem58 Structured version   Visualization version   GIF version

Theorem fourierdlem58 40902
 Description: The derivative of 𝐾 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem58.k 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem58.ass (𝜑𝐴 ⊆ (-π[,]π))
fourierdlem58.0nA (𝜑 → ¬ 0 ∈ 𝐴)
fourierdlem58.4 (𝜑𝐴 ∈ (topGen‘ran (,)))
Assertion
Ref Expression
fourierdlem58 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem58
StepHypRef Expression
1 pire 24430 . . . . . . . . . 10 π ∈ ℝ
21a1i 11 . . . . . . . . 9 ((𝜑𝑠𝐴) → π ∈ ℝ)
32renegcld 10669 . . . . . . . 8 ((𝜑𝑠𝐴) → -π ∈ ℝ)
43, 2iccssred 40248 . . . . . . 7 ((𝜑𝑠𝐴) → (-π[,]π) ⊆ ℝ)
5 fourierdlem58.ass . . . . . . . 8 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3744 . . . . . . 7 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
74, 6sseldd 3745 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
8 2re 11302 . . . . . . . 8 2 ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
107rehalfcld 11491 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
1110resincld 15092 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
129, 11remulcld 10282 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
13 2cnd 11305 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
147recnd 10280 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
1514halfcld 11489 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℂ)
1615sincld 15079 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
17 2ne0 11325 . . . . . . . 8 2 ≠ 0
1817a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ≠ 0)
19 eqcom 2767 . . . . . . . . . . . . . 14 (𝑠 = 0 ↔ 0 = 𝑠)
2019biimpi 206 . . . . . . . . . . . . 13 (𝑠 = 0 → 0 = 𝑠)
2120adantl 473 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 0 = 𝑠)
22 simpl 474 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 𝑠𝐴)
2321, 22eqeltrd 2839 . . . . . . . . . . 11 ((𝑠𝐴𝑠 = 0) → 0 ∈ 𝐴)
2423adantll 752 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → 0 ∈ 𝐴)
25 fourierdlem58.0nA . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ 𝐴)
2625ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → ¬ 0 ∈ 𝐴)
2724, 26pm2.65da 601 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
2827neqned 2939 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
29 fourierdlem44 40889 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
306, 28, 29syl2anc 696 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
3113, 16, 18, 30mulne0d 10891 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
327, 12, 31redivcld 11065 . . . . 5 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
33 fourierdlem58.k . . . . 5 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
3432, 33fmptd 6549 . . . 4 (𝜑𝐾:𝐴⟶ℝ)
351a1i 11 . . . . . . 7 (𝜑 → π ∈ ℝ)
3635renegcld 10669 . . . . . 6 (𝜑 → -π ∈ ℝ)
3736, 35iccssred 40248 . . . . 5 (𝜑 → (-π[,]π) ⊆ ℝ)
385, 37sstrd 3754 . . . 4 (𝜑𝐴 ⊆ ℝ)
39 dvfre 23933 . . . 4 ((𝐾:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
4034, 38, 39syl2anc 696 . . 3 (𝜑 → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
41 fourierdlem58.4 . . . . . . . . 9 (𝜑𝐴 ∈ (topGen‘ran (,)))
42 eqidd 2761 . . . . . . . . 9 (𝜑 → (𝑠𝐴𝑠) = (𝑠𝐴𝑠))
43 eqidd 2761 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
4441, 7, 12, 42, 43offval2 7080 . . . . . . . 8 (𝜑 → ((𝑠𝐴𝑠) ∘𝑓 / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))))
4544, 33syl6reqr 2813 . . . . . . 7 (𝜑𝐾 = ((𝑠𝐴𝑠) ∘𝑓 / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))))
4645oveq2d 6830 . . . . . 6 (𝜑 → (ℝ D 𝐾) = (ℝ D ((𝑠𝐴𝑠) ∘𝑓 / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))))
47 reelprrecn 10240 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
4847a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
49 eqid 2760 . . . . . . . 8 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
5014, 49fmptd 6549 . . . . . . 7 (𝜑 → (𝑠𝐴𝑠):𝐴⟶ℂ)
5113, 16mulcld 10272 . . . . . . . . 9 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
5231neneqd 2937 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) = 0)
53 elsng 4335 . . . . . . . . . . 11 ((2 · (sin‘(𝑠 / 2))) ∈ ℝ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5412, 53syl 17 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5552, 54mtbird 314 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) ∈ {0})
5651, 55eldifd 3726 . . . . . . . 8 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
57 eqid 2760 . . . . . . . 8 (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))
5856, 57fmptd 6549 . . . . . . 7 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))):𝐴⟶(ℂ ∖ {0}))
59 eqid 2760 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6059tgioo2 22827 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6141, 60syl6eleq 2849 . . . . . . . . 9 (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t ℝ))
6248, 61dvmptidg 40652 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴𝑠)) = (𝑠𝐴 ↦ 1))
63 ax-resscn 10205 . . . . . . . . . . 11 ℝ ⊆ ℂ
6463a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
6538, 64sstrd 3754 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
66 1cnd 10268 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
67 ssid 3765 . . . . . . . . . 10 ℂ ⊆ ℂ
6867a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
6965, 66, 68constcncfg 40605 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
7062, 69eqeltrd 2839 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴𝑠)) ∈ (𝐴cn→ℂ))
7138resmptd 5610 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
7271eqcomd 2766 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴))
7372oveq2d 6830 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)))
74 eqid 2760 . . . . . . . . . . . 12 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
75 2cnd 11305 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 2 ∈ ℂ)
76 recn 10238 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
7776halfcld 11489 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
7877sincld 15079 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℂ)
7975, 78mulcld 10272 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
8074, 79fmpti 6547 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ
8180a1i 11 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ)
82 ssid 3765 . . . . . . . . . . 11 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℝ)
8459, 60dvres 23894 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ 𝐴 ⊆ ℝ)) → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
8564, 81, 83, 38, 84syl22anc 1478 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
86 retop 22786 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
8786a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
88 uniretop 22787 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
8988isopn3 21092 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9087, 38, 89syl2anc 696 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9141, 90mpbid 222 . . . . . . . . . . 11 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)
9291reseq2d 5551 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴))
93 resmpt 5607 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
9463, 93ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
95 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 𝑠 ∈ ℂ)
96 2cnd 11305 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ∈ ℂ)
9717a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ≠ 0)
9895, 96, 97divrec2d 11017 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (𝑠 / 2) = ((1 / 2) · 𝑠))
9998eqcomd 2766 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) = (𝑠 / 2))
10076, 99syl 17 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → ((1 / 2) · 𝑠) = (𝑠 / 2))
101100fveq2d 6357 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → (sin‘((1 / 2) · 𝑠)) = (sin‘(𝑠 / 2)))
102101oveq2d 6830 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → (2 · (sin‘((1 / 2) · 𝑠))) = (2 · (sin‘(𝑠 / 2))))
103102mpteq2ia 4892 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
10494, 103eqtr2i 2783 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)
105104oveq2i 6825 . . . . . . . . . . . . 13 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ))
106 eqid 2760 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
107 halfcn 11459 . . . . . . . . . . . . . . . . . . 19 (1 / 2) ∈ ℂ
108107a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ → (1 / 2) ∈ ℂ)
109108, 95mulcld 10272 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) ∈ ℂ)
110109sincld 15079 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℂ → (sin‘((1 / 2) · 𝑠)) ∈ ℂ)
11196, 110mulcld 10272 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑠))) ∈ ℂ)
112106, 111fmpti 6547 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ
113 2cn 11303 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
114 dvasinbx 40656 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
115113, 107, 114mp2an 710 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
116113, 17recidi 10968 . . . . . . . . . . . . . . . . . . . . . 22 (2 · (1 / 2)) = 1
117116a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (2 · (1 / 2)) = 1)
11899fveq2d 6357 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘((1 / 2) · 𝑠)) = (cos‘(𝑠 / 2)))
119117, 118oveq12d 6832 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘(𝑠 / 2))))
120 halfcl 11469 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ → (𝑠 / 2) ∈ ℂ)
121120coscld 15080 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘(𝑠 / 2)) ∈ ℂ)
122121mulid2d 10270 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (1 · (cos‘(𝑠 / 2))) = (cos‘(𝑠 / 2)))
123119, 122eqtrd 2794 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (cos‘(𝑠 / 2)))
124123mpteq2ia 4892 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
125115, 124eqtri 2782 . . . . . . . . . . . . . . . . 17 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
126125dmeqi 5480 . . . . . . . . . . . . . . . 16 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
127 dmmptg 5793 . . . . . . . . . . . . . . . . 17 (∀𝑠 ∈ ℂ (cos‘(𝑠 / 2)) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ)
128127, 121mprg 3064 . . . . . . . . . . . . . . . 16 dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ
129126, 128eqtri 2782 . . . . . . . . . . . . . . 15 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = ℂ
13063, 129sseqtr4i 3779 . . . . . . . . . . . . . 14 ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
131 dvres3 23896 . . . . . . . . . . . . . 14 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ))
13247, 112, 67, 130, 131mp4an 711 . . . . . . . . . . . . 13 (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ)
133125reseq1i 5547 . . . . . . . . . . . . 13 ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
134105, 132, 1333eqtri 2786 . . . . . . . . . . . 12 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
135134reseq1i 5547 . . . . . . . . . . 11 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴)
136135a1i 11 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴))
13738resabs1d 5586 . . . . . . . . . . 11 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴))
13865resmptd 5610 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
139137, 138eqtrd 2794 . . . . . . . . . 10 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14092, 136, 1393eqtrd 2798 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14173, 85, 1403eqtrd 2798 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
142 coscn 24418 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
143142a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
14465, 68idcncfg 40606 . . . . . . . . . 10 (𝜑 → (𝑠𝐴𝑠) ∈ (𝐴cn→ℂ))
145 2cnd 11305 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
14617a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
147 eldifsn 4462 . . . . . . . . . . . 12 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
148145, 146, 147sylanbrc 701 . . . . . . . . . . 11 (𝜑 → 2 ∈ (ℂ ∖ {0}))
149 difssd 3881 . . . . . . . . . . 11 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
15065, 148, 149constcncfg 40605 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ 2) ∈ (𝐴cn→(ℂ ∖ {0})))
151144, 150divcncf 23436 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (𝑠 / 2)) ∈ (𝐴cn→ℂ))
152143, 151cncfmpt1f 22937 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ (cos‘(𝑠 / 2))) ∈ (𝐴cn→ℂ))
153141, 152eqeltrd 2839 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) ∈ (𝐴cn→ℂ))
15448, 50, 58, 70, 153dvdivcncf 40663 . . . . . 6 (𝜑 → (ℝ D ((𝑠𝐴𝑠) ∘𝑓 / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))) ∈ (𝐴cn→ℂ))
15546, 154eqeltrd 2839 . . . . 5 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℂ))
156 cncff 22917 . . . . 5 ((ℝ D 𝐾) ∈ (𝐴cn→ℂ) → (ℝ D 𝐾):𝐴⟶ℂ)
157 fdm 6212 . . . . 5 ((ℝ D 𝐾):𝐴⟶ℂ → dom (ℝ D 𝐾) = 𝐴)
158155, 156, 1573syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐾) = 𝐴)
159158feq2d 6192 . . 3 (𝜑 → ((ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16040, 159mpbid 222 . 2 (𝜑 → (ℝ D 𝐾):𝐴⟶ℝ)
161 cncffvrn 22922 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐾) ∈ (𝐴cn→ℂ)) → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16264, 155, 161syl2anc 696 . 2 (𝜑 → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
163160, 162mpbird 247 1 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ∖ cdif 3712   ⊆ wss 3715  {csn 4321  {cpr 4323   ↦ cmpt 4881  dom cdm 5266  ran crn 5267   ↾ cres 5268  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814   ∘𝑓 cof 7061  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   · cmul 10153  -cneg 10479   / cdiv 10896  2c2 11282  (,)cioo 12388  [,]cicc 12391  sincsin 15013  cosccos 15014  πcpi 15016   ↾t crest 16303  TopOpenctopn 16304  topGenctg 16320  ℂfldccnfld 19968  Topctop 20920  intcnt 21043  –cn→ccncf 22900   D cdv 23846 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-t1 21340  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850 This theorem is referenced by:  fourierdlem72  40916
 Copyright terms: Public domain W3C validator