Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem56 Structured version   Visualization version   GIF version

Theorem fourierdlem56 40890
Description: Derivative of the 𝐾 function on an interval non containing ' 0 '. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem56.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem56.a (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
fourierdlem56.r4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
Assertion
Ref Expression
fourierdlem56 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem56
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem56.a . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
21difss2d 3889 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
32sselda 3750 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4 1ex 10236 . . . . . . . 8 1 ∈ V
5 ovex 6822 . . . . . . . 8 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
64, 5ifex 4293 . . . . . . 7 if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V
76a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V)
8 fourierdlem56.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
98fvmpt2 6433 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
103, 7, 9syl2anc 565 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
11 fourierdlem56.r4 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
1211neneqd 2947 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
1312iffalsed 4234 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
14 elioore 12409 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1514adantl 467 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1615recnd 10269 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
1716halfcld 11478 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
1817sincld 15065 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
19 2cnd 11294 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20 fourierdlem44 40879 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
213, 11, 20syl2anc 565 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
22 2ne0 11314 . . . . . . . 8 2 ≠ 0
2322a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2416, 18, 19, 21, 23divdiv1d 11033 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 / (sin‘(𝑠 / 2))) / 2) = (𝑠 / ((sin‘(𝑠 / 2)) · 2)))
2518, 19mulcomd 10262 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2)) · 2) = (2 · (sin‘(𝑠 / 2))))
2625oveq2d 6808 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / ((sin‘(𝑠 / 2)) · 2)) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
2724, 26eqtr2d 2805 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2810, 13, 273eqtrd 2808 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2928mpteq2dva 4876 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2)))
3029oveq2d 6808 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))))
31 reelprrecn 10229 . . . 4 ℝ ∈ {ℝ, ℂ}
3231a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3316, 18, 21divcld 11002 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (sin‘(𝑠 / 2))) ∈ ℂ)
34 1red 10256 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
3515rehalfcld 11480 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3635resincld 15078 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3734, 36remulcld 10271 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 · (sin‘(𝑠 / 2))) ∈ ℝ)
3835recoscld 15079 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℝ)
3934rehalfcld 11480 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℝ)
4038, 39remulcld 10271 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℝ)
4140, 15remulcld 10271 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) ∈ ℝ)
4237, 41resubcld 10659 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) ∈ ℝ)
4336resqcld 13241 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ∈ ℝ)
44 2z 11610 . . . . . 6 2 ∈ ℤ
4544a1i 11 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
4618, 21, 45expne0d 13220 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ≠ 0)
4742, 43, 46redivcld 11054 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) ∈ ℝ)
48 1cnd 10257 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
49 recn 10227 . . . . . 6 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
5049adantl 467 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
51 1red 10256 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
5232dvmptid 23939 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
53 ioossre 12439 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
55 eqid 2770 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5655tgioo2 22825 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
57 iooretop 22788 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
5857a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
5932, 50, 51, 52, 54, 56, 55, 58dvmptres 23945 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
60 elsni 4331 . . . . . . 7 ((sin‘(𝑠 / 2)) ∈ {0} → (sin‘(𝑠 / 2)) = 0)
6160necon3ai 2967 . . . . . 6 ((sin‘(𝑠 / 2)) ≠ 0 → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6221, 61syl 17 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6318, 62eldifd 3732 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
6417coscld 15066 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
6548halfcld 11478 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
6664, 65mulcld 10261 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℂ)
67 cnelprrecn 10230 . . . . . 6 ℂ ∈ {ℝ, ℂ}
6867a1i 11 . . . . 5 (𝜑 → ℂ ∈ {ℝ, ℂ})
69 sinf 15059 . . . . . . 7 sin:ℂ⟶ℂ
7069a1i 11 . . . . . 6 (𝜑 → sin:ℂ⟶ℂ)
7170ffvelrnda 6502 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
72 cosf 15060 . . . . . . 7 cos:ℂ⟶ℂ
7372a1i 11 . . . . . 6 (𝜑 → cos:ℂ⟶ℂ)
7473ffvelrnda 6502 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
75 2cnd 11294 . . . . . 6 (𝜑 → 2 ∈ ℂ)
7622a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
7732, 16, 34, 59, 75, 76dvmptdivc 23947 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)))
78 ffn 6185 . . . . . . . . . . 11 (sin:ℂ⟶ℂ → sin Fn ℂ)
7969, 78ax-mp 5 . . . . . . . . . 10 sin Fn ℂ
80 dffn5 6383 . . . . . . . . . 10 (sin Fn ℂ ↔ sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
8179, 80mpbi 220 . . . . . . . . 9 sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))
8281eqcomi 2779 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (sin‘𝑥)) = sin
8382oveq2i 6803 . . . . . . 7 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (ℂ D sin)
84 dvsin 23964 . . . . . . 7 (ℂ D sin) = cos
85 ffn 6185 . . . . . . . . 9 (cos:ℂ⟶ℂ → cos Fn ℂ)
8672, 85ax-mp 5 . . . . . . . 8 cos Fn ℂ
87 dffn5 6383 . . . . . . . 8 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
8886, 87mpbi 220 . . . . . . 7 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
8983, 84, 883eqtri 2796 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
9089a1i 11 . . . . 5 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
91 fveq2 6332 . . . . 5 (𝑥 = (𝑠 / 2) → (sin‘𝑥) = (sin‘(𝑠 / 2)))
92 fveq2 6332 . . . . 5 (𝑥 = (𝑠 / 2) → (cos‘𝑥) = (cos‘(𝑠 / 2)))
9332, 68, 17, 39, 71, 74, 77, 90, 91, 92dvmptco 23954 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑠 / 2)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑠 / 2)) · (1 / 2))))
9432, 16, 48, 59, 63, 66, 93dvmptdiv 23956 . . 3 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2))))
9532, 33, 47, 94, 75, 76dvmptdivc 23947 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
9614recnd 10269 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
9796halfcld 11478 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
9897sincld 15065 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
9998mulid2d 10259 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (1 · (sin‘(𝑠 / 2))) = (sin‘(𝑠 / 2)))
10097coscld 15066 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
101 2cnd 11294 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
10222a1i 11 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ≠ 0)
103100, 101, 102divrecd 11005 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) / 2) = ((cos‘(𝑠 / 2)) · (1 / 2)))
104103eqcomd 2776 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) · (1 / 2)) = ((cos‘(𝑠 / 2)) / 2))
105104oveq1d 6807 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) = (((cos‘(𝑠 / 2)) / 2) · 𝑠))
10699, 105oveq12d 6810 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) = ((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)))
107106oveq1d 6807 . . . . 5 (𝑠 ∈ (𝐴(,)𝐵) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) = (((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)))
108107oveq1d 6807 . . . 4 (𝑠 ∈ (𝐴(,)𝐵) → ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2) = ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
109108mpteq2ia 4872 . . 3 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
110109a1i 11 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
11130, 95, 1103eqtrd 2808 1 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  Vcvv 3349  cdif 3718  wss 3721  ifcif 4223  {csn 4314  {cpr 4316  cmpt 4861  ran crn 5250   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  1c1 10138   · cmul 10142  cmin 10467  -cneg 10468   / cdiv 10885  2c2 11271  cz 11578  (,)cioo 12379  [,]cicc 12382  cexp 13066  sincsin 14999  cosccos 15000  πcpi 15002  TopOpenctopn 16289  topGenctg 16305  fldccnfld 19960   D cdv 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14014  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-ef 15003  df-sin 15005  df-cos 15006  df-pi 15008  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-t1 21338  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-limc 23849  df-dv 23850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator