Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem53 Structured version   Visualization version   GIF version

Theorem fourierdlem53 40887
Description: The limit of 𝐹(𝑠) at (𝑋 + 𝐷) is the limit of 𝐹(𝑋 + 𝑠) at 𝐷. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem53.1 (𝜑𝐹:ℝ⟶ℝ)
fourierdlem53.2 (𝜑𝑋 ∈ ℝ)
fourierdlem53.3 (𝜑𝐴 ⊆ ℝ)
fourierdlem53.g 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
fourierdlem53.xps ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
fourierdlem53.b (𝜑𝐵 ⊆ ℝ)
fourierdlem53.sned ((𝜑𝑠𝐴) → 𝑠𝐷)
fourierdlem53.c (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
fourierdlem53.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fourierdlem53 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐺(𝑠)

Proof of Theorem fourierdlem53
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem53.xps . . . . . . 7 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
2 fourierdlem53.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
3 fourierdlem53.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
42, 3fssresd 6211 . . . . . . . . . 10 (𝜑 → (𝐹𝐵):𝐵⟶ℝ)
5 fdm 6191 . . . . . . . . . 10 ((𝐹𝐵):𝐵⟶ℝ → dom (𝐹𝐵) = 𝐵)
64, 5syl 17 . . . . . . . . 9 (𝜑 → dom (𝐹𝐵) = 𝐵)
76eqcomd 2776 . . . . . . . 8 (𝜑𝐵 = dom (𝐹𝐵))
87adantr 466 . . . . . . 7 ((𝜑𝑠𝐴) → 𝐵 = dom (𝐹𝐵))
91, 8eleqtrd 2851 . . . . . 6 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ dom (𝐹𝐵))
10 fourierdlem53.2 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
1110recnd 10269 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
1211adantr 466 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℂ)
13 fourierdlem53.3 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1413sselda 3750 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
1514recnd 10269 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
16 fourierdlem53.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
1716adantr 466 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝐷 ∈ ℂ)
18 fourierdlem53.sned . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠𝐷)
1912, 15, 17, 18addneintrd 10444 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ≠ (𝑋 + 𝐷))
2019neneqd 2947 . . . . . . 7 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) = (𝑋 + 𝐷))
2110adantr 466 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
2221, 14readdcld 10270 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
23 elsng 4328 . . . . . . . 8 ((𝑋 + 𝑠) ∈ ℝ → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2422, 23syl 17 . . . . . . 7 ((𝜑𝑠𝐴) → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2520, 24mtbird 314 . . . . . 6 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)})
269, 25eldifd 3732 . . . . 5 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2726ralrimiva 3114 . . . 4 (𝜑 → ∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
28 eqid 2770 . . . . 5 (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠))
2928rnmptss 6534 . . . 4 (∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}) → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
3027, 29syl 17 . . 3 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
31 eqid 2770 . . . 4 (𝑠𝐴𝑋) = (𝑠𝐴𝑋)
32 eqid 2770 . . . 4 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
33 ax-resscn 10194 . . . . . 6 ℝ ⊆ ℂ
3413, 33syl6ss 3762 . . . . 5 (𝜑𝐴 ⊆ ℂ)
3531, 34, 11, 16constlimc 40368 . . . 4 (𝜑𝑋 ∈ ((𝑠𝐴𝑋) lim 𝐷))
3634, 32, 16idlimc 40370 . . . 4 (𝜑𝐷 ∈ ((𝑠𝐴𝑠) lim 𝐷))
3731, 32, 28, 12, 15, 35, 36addlimc 40392 . . 3 (𝜑 → (𝑋 + 𝐷) ∈ ((𝑠𝐴 ↦ (𝑋 + 𝑠)) lim 𝐷))
38 fourierdlem53.c . . 3 (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
3930, 37, 38limccog 40364 . 2 (𝜑𝐶 ∈ (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷))
40 simpr 471 . . . . . . . . 9 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → 𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)))
4128elrnmpt 5510 . . . . . . . . . 10 (𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) → (𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ↔ ∃𝑠𝐴 𝑦 = (𝑋 + 𝑠)))
4241adantl 467 . . . . . . . . 9 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → (𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ↔ ∃𝑠𝐴 𝑦 = (𝑋 + 𝑠)))
4340, 42mpbid 222 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → ∃𝑠𝐴 𝑦 = (𝑋 + 𝑠))
44 nfv 1994 . . . . . . . . . 10 𝑠𝜑
45 nfmpt1 4879 . . . . . . . . . . . 12 𝑠(𝑠𝐴 ↦ (𝑋 + 𝑠))
4645nfrn 5506 . . . . . . . . . . 11 𝑠ran (𝑠𝐴 ↦ (𝑋 + 𝑠))
4746nfcri 2906 . . . . . . . . . 10 𝑠 𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))
4844, 47nfan 1979 . . . . . . . . 9 𝑠(𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)))
49 nfv 1994 . . . . . . . . 9 𝑠 𝑦𝐵
50 simp3 1131 . . . . . . . . . . . 12 ((𝜑𝑠𝐴𝑦 = (𝑋 + 𝑠)) → 𝑦 = (𝑋 + 𝑠))
5113adant3 1125 . . . . . . . . . . . 12 ((𝜑𝑠𝐴𝑦 = (𝑋 + 𝑠)) → (𝑋 + 𝑠) ∈ 𝐵)
5250, 51eqeltrd 2849 . . . . . . . . . . 11 ((𝜑𝑠𝐴𝑦 = (𝑋 + 𝑠)) → 𝑦𝐵)
53523exp 1111 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 → (𝑦 = (𝑋 + 𝑠) → 𝑦𝐵)))
5453adantr 466 . . . . . . . . 9 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → (𝑠𝐴 → (𝑦 = (𝑋 + 𝑠) → 𝑦𝐵)))
5548, 49, 54rexlimd 3173 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → (∃𝑠𝐴 𝑦 = (𝑋 + 𝑠) → 𝑦𝐵))
5643, 55mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → 𝑦𝐵)
5756ralrimiva 3114 . . . . . 6 (𝜑 → ∀𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))𝑦𝐵)
58 dfss3 3739 . . . . . 6 (ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵 ↔ ∀𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))𝑦𝐵)
5957, 58sylibr 224 . . . . 5 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵)
60 cores 5782 . . . . 5 (ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
6159, 60syl 17 . . . 4 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
6222, 28fmptd 6527 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ)
63 fcompt 6542 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ) → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
642, 62, 63syl2anc 565 . . . 4 (𝜑 → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
65 fourierdlem53.g . . . . . 6 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
6665a1i 11 . . . . 5 (𝜑𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))))
67 oveq2 6800 . . . . . . . 8 (𝑠 = 𝑥 → (𝑋 + 𝑠) = (𝑋 + 𝑥))
6867fveq2d 6336 . . . . . . 7 (𝑠 = 𝑥 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑥)))
6968cbvmptv 4882 . . . . . 6 (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥)))
7069a1i 11 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))))
71 eqidd 2771 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠)))
7267adantl 467 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑠 = 𝑥) → (𝑋 + 𝑠) = (𝑋 + 𝑥))
73 simpr 471 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
7410adantr 466 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑋 ∈ ℝ)
7513sselda 3750 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
7674, 75readdcld 10270 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) ∈ ℝ)
7771, 72, 73, 76fvmptd 6430 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥) = (𝑋 + 𝑥))
7877eqcomd 2776 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) = ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))
7978fveq2d 6336 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥)))
8079mpteq2dva 4876 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
8166, 70, 803eqtrrd 2809 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))) = 𝐺)
8261, 64, 813eqtrd 2808 . . 3 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = 𝐺)
8382oveq1d 6807 . 2 (𝜑 → (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷) = (𝐺 lim 𝐷))
8439, 83eleqtrd 2851 1 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wral 3060  wrex 3061  cdif 3718  wss 3721  {csn 4314  cmpt 4861  dom cdm 5249  ran crn 5250  cres 5251  ccom 5253  wf 6027  cfv 6031  (class class class)co 6792  cc 10135  cr 10136   + caddc 10140   lim climc 23845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fi 8472  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-plusg 16161  df-mulr 16162  df-starv 16163  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-rest 16290  df-topn 16291  df-topgen 16311  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cnp 21252  df-xms 22344  df-ms 22345  df-limc 23849
This theorem is referenced by:  fourierdlem74  40908  fourierdlem75  40909  fourierdlem76  40910  fourierdlem84  40918
  Copyright terms: Public domain W3C validator