Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem49 Structured version   Visualization version   GIF version

Theorem fourierdlem49 40690
Description: The given periodic function 𝐹 has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem49.a (𝜑𝐴 ∈ ℝ)
fourierdlem49.b (𝜑𝐵 ∈ ℝ)
fourierdlem49.altb (𝜑𝐴 < 𝐵)
fourierdlem49.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem49.t 𝑇 = (𝐵𝐴)
fourierdlem49.m (𝜑𝑀 ∈ ℕ)
fourierdlem49.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem49.d (𝜑𝐷 ⊆ ℝ)
fourierdlem49.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem49.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem49.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem49.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem49.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem49.x (𝜑𝑋 ∈ ℝ)
fourierdlem49.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem49.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
Assertion
Ref Expression
fourierdlem49 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑘   𝐵,𝑚,𝑝   𝑥,𝐵,𝑘   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑥   𝑖,𝐹,𝑘,𝑥   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑥,𝑀   𝑄,𝑖,𝑘   𝑄,𝑝   𝑥,𝑄   𝑇,𝑘,𝑥   𝑖,𝑋,𝑘,𝑥   𝑘,𝑍,𝑥   𝜑,𝑖,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑘)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑇(𝑖,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑚,𝑝)   𝑍(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem49
Dummy variables 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem49.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 fourierdlem49.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 fourierdlem49.altb . . . . . 6 (𝜑𝐴 < 𝐵)
4 fourierdlem49.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem49.e . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
6 ovex 6718 . . . . . . . . . 10 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
7 fourierdlem49.z . . . . . . . . . . 11 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
87fvmpt2 6330 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
96, 8mpan2 707 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
109oveq2d 6706 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
1110mpteq2ia 4773 . . . . . . 7 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
125, 11eqtri 2673 . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
131, 2, 3, 4, 12fourierdlem4 40646 . . . . 5 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
14 fourierdlem49.x . . . . 5 (𝜑𝑋 ∈ ℝ)
1513, 14ffvelrnd 6400 . . . 4 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
16 simpr 476 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
17 fourierdlem49.q . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem49.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
19 fourierdlem49.p . . . . . . . . . . . . . . 15 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2019fourierdlem2 40644 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2118, 20syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2217, 21mpbid 222 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2322simpld 474 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
24 elmapi 7921 . . . . . . . . . . 11 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
2523, 24syl 17 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶ℝ)
26 ffn 6083 . . . . . . . . . 10 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
2725, 26syl 17 . . . . . . . . 9 (𝜑𝑄 Fn (0...𝑀))
2827ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
29 fvelrnb 6282 . . . . . . . 8 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3028, 29syl 17 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3116, 30mpbid 222 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
32 1zzd 11446 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
33 elfzelz 12380 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3433ad2antlr 763 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
35 1e0p1 11590 . . . . . . . . . . . . . . . . 17 1 = (0 + 1)
3635a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 = (0 + 1))
3734zred 11520 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
38 elfzle1 12382 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
3938ad2antlr 763 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
40 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
4140eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
4241ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
43 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
4443adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
4522simprld 810 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
4645simpld 474 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄‘0) = 𝐴)
4746ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
4842, 44, 473eqtrd 2689 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
4948adantllr 755 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
5049adantllr 755 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
511adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
521rexrd 10127 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ ℝ*)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
542rexrd 10127 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ*)
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
56 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
57 iocgtlb 40042 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5853, 55, 56, 57syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5951, 58gtned 10210 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
6059neneqd 2828 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
6160ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
6250, 61pm2.65da 599 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
6362neqned 2830 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
6437, 39, 63ne0gt0d 10212 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
65 0zd 11427 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
66 zltp1le 11465 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6765, 34, 66syl2anc 694 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6864, 67mpbid 222 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
6936, 68eqbrtrd 4707 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
70 eluz2 11731 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
7132, 34, 69, 70syl3anbrc 1265 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
72 nnuz 11761 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
7371, 72syl6eleqr 2741 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
74 nnm1nn0 11372 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
76 nn0uz 11760 . . . . . . . . . . . . 13 0 = (ℤ‘0)
7776a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ℕ0 = (ℤ‘0))
7875, 77eleqtrd 2732 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
7918nnzd 11519 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
8079ad3antrrr 766 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
81 peano2zm 11458 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
8233, 81syl 17 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
8382zred 11520 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
8433zred 11520 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
85 elfzel2 12378 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
8685zred 11520 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
8784ltm1d 10994 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
88 elfzle2 12383 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
8983, 84, 86, 87, 88ltletrd 10235 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
9089ad2antlr 763 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
91 elfzo2 12512 . . . . . . . . . . 11 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
9278, 80, 90, 91syl3anbrc 1265 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
9325ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
9434, 81syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
9565, 80, 943jca 1261 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ))
9675nn0ge0d 11392 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
9783, 86, 89ltled 10223 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
9897ad2antlr 763 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
9995, 96, 98jca32 557 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) ∧ (0 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑀)))
100 elfz2 12371 . . . . . . . . . . . . . . 15 ((𝑗 − 1) ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) ∧ (0 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑀)))
10199, 100sylibr 224 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
10293, 101ffvelrnd 6400 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
103102rexrd 10127 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
10425ffvelrnda 6399 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
105104rexrd 10127 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
106105adantlr 751 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
107106adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
108 iocssre 12291 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10952, 2, 108syl2anc 694 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
110109sselda 3636 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
111110rexrd 10127 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
112111ad2antrr 762 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
113 simplll 813 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
114 ovex 6718 . . . . . . . . . . . . . . . 16 (𝑗 − 1) ∈ V
115 eleq1 2718 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
116115anbi2d 740 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
117 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
118 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
119118fveq2d 6233 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
120117, 119breq12d 4698 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
121116, 120imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
12222simprrd 812 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
123122r19.21bi 2961 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
124114, 121, 123vtocl 3290 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
125113, 92, 124syl2anc 694 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
12633zcnd 11521 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
127 1cnd 10094 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
128126, 127npcand 10434 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
129128eqcomd 2657 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
130129fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
131130eqcomd 2657 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
132131ad2antlr 763 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
133125, 132breqtrd 4711 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
134 simpr 476 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
135133, 134breqtrd 4711 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
136109, 15sseldd 3637 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸𝑋) ∈ ℝ)
137136leidd 10632 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
138137ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
13941adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
140138, 139breqtrd 4711 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
141140adantllr 755 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
142103, 107, 112, 135, 141eliocd 40048 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
143130oveq2d 6706 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
144143ad2antlr 763 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
145142, 144eleqtrd 2732 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
146117, 119oveq12d 6708 . . . . . . . . . . . 12 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
147146eleq2d 2716 . . . . . . . . . . 11 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
148147rspcev 3340 . . . . . . . . . 10 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
14992, 145, 148syl2anc 694 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
150149ex 449 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
151150adantlr 751 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
152151rexlimdva 3060 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
15331, 152mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
15418ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
15525ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
156 iocssicc 12299 . . . . . . . . . 10 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
15746eqcomd 2657 . . . . . . . . . . 11 (𝜑𝐴 = (𝑄‘0))
15845simprd 478 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑀) = 𝐵)
159158eqcomd 2657 . . . . . . . . . . 11 (𝜑𝐵 = (𝑄𝑀))
160157, 159oveq12d 6708 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
161156, 160syl5sseq 3686 . . . . . . . . 9 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
162161sselda 3636 . . . . . . . 8 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
163162adantr 480 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
164 simpr 476 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
165 fveq2 6229 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
166165breq1d 4695 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
167166cbvrabv 3230 . . . . . . . 8 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
168167supeq1i 8394 . . . . . . 7 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
169154, 155, 163, 164, 168fourierdlem25 40667 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
170 ioossioc 40031 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
171170sseli 3632 . . . . . . . 8 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
172171a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
173172reximdva 3046 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
174169, 173mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
175153, 174pm2.61dan 849 . . . 4 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
17615, 175mpdan 703 . . 3 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
177 fourierdlem49.f . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℝ)
178 frel 6088 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → Rel 𝐹)
179177, 178syl 17 . . . . . . . . . 10 (𝜑 → Rel 𝐹)
180 resindm 5479 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)(𝐸𝑋))))
181180eqcomd 2657 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
182179, 181syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
183 fdm 6089 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
184177, 183syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
185184ineq2d 3847 . . . . . . . . . 10 (𝜑 → ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹) = ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
186185reseq2d 5428 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
187182, 186eqtrd 2685 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
1881873ad2ant1 1102 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
189188oveq1d 6705 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
190 ax-resscn 10031 . . . . . . . . . . 11 ℝ ⊆ ℂ
191190a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
192177, 191fssd 6095 . . . . . . . . 9 (𝜑𝐹:𝐷⟶ℂ)
1931923ad2ant1 1102 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐹:𝐷⟶ℂ)
194 inss2 3867 . . . . . . . . 9 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷
195194a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷)
196193, 195fssresd 6109 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)):((-∞(,)(𝐸𝑋)) ∩ 𝐷)⟶ℂ)
197 mnfxr 10134 . . . . . . . . . 10 -∞ ∈ ℝ*
198197a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ∈ ℝ*)
19925adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
200 elfzofz 12524 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
201200adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
202199, 201ffvelrnd 6400 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
203202rexrd 10127 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
204202mnfltd 11996 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < (𝑄𝑖))
205198, 203, 204xrltled 39800 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ (𝑄𝑖))
206 iooss1 12248 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄𝑖)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
207197, 205, 206sylancr 696 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
2082073adant3 1101 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
209 fzofzp1 12605 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
210209adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
211199, 210ffvelrnd 6400 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
2122113adant3 1101 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
213212rexrd 10127 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
2142023adant3 1101 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
215214rexrd 10127 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
216 simp3 1083 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
217 iocleub 40043 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
218215, 213, 216, 217syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
219 iooss2 12249 . . . . . . . . . 10 (((𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
220213, 218, 219syl2anc 694 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
221 fourierdlem49.cn . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
222 cncff 22743 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
223 fdm 6089 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
224221, 222, 2233syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
225 ssdmres 5455 . . . . . . . . . . . 12 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
226224, 225sylibr 224 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
227184adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
228226, 227sseqtrd 3674 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
2292283adant3 1101 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
230220, 229sstrd 3646 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
231208, 230ssind 3870 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
232 fourierdlem49.d . . . . . . . . . 10 (𝜑𝐷 ⊆ ℝ)
233232, 191sstrd 3646 . . . . . . . . 9 (𝜑𝐷 ⊆ ℂ)
2342333ad2ant1 1102 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 ⊆ ℂ)
235194, 234syl5ss 3647 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℂ)
236 eqid 2651 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
237 eqid 2651 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2381363ad2ant1 1102 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ)
239238rexrd 10127 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ*)
240 iocgtlb 40042 . . . . . . . . . 10 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
241215, 213, 216, 240syl3anc 1366 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
242238leidd 10632 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝐸𝑋))
243215, 239, 239, 241, 242eliocd 40048 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝐸𝑋)))
244 snunioo2 40049 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ* ∧ (𝑄𝑖) < (𝐸𝑋)) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
245215, 239, 241, 244syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
246245fveq2d 6233 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))))
247236cnfldtop 22634 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
248 ovex 6718 . . . . . . . . . . . . 13 (-∞(,)(𝐸𝑋)) ∈ V
249248inex1 4832 . . . . . . . . . . . 12 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∈ V
250 snex 4938 . . . . . . . . . . . 12 {(𝐸𝑋)} ∈ V
251249, 250unex 6998 . . . . . . . . . . 11 (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V
252 resttop 21012 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top)
253247, 251, 252mp2an 708 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top
254 retop 22612 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
255254a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (topGen‘ran (,)) ∈ Top)
256251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V)
257 iooretop 22616 . . . . . . . . . . . . 13 ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))
258257a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,)))
259 elrestr 16136 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V ∧ ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
260255, 256, 258, 259syl3anc 1366 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
261 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 = (𝐸𝑋))
262 pnfxr 10130 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
263262a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → +∞ ∈ ℝ*)
264238ltpnfd 11993 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) < +∞)
265215, 263, 238, 241, 264eliood 40038 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,)+∞))
266 snidg 4239 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ {(𝐸𝑋)})
267 elun2 3814 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ {(𝐸𝑋)} → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
268266, 267syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
269136, 268syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2702693ad2ant1 1102 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
271265, 270elind 3831 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
272271adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
273261, 272eqeltrd 2730 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
274273adantlr 751 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
275215adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
276262a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → +∞ ∈ ℝ*)
277203adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
278136adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
279278adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
280 iocssre 12291 . . . . . . . . . . . . . . . . . . . 20 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
281277, 279, 280syl2anc 694 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
282 simpr 476 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
283281, 282sseldd 3637 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
2842833adantl3 1239 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
285279rexrd 10127 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
286 iocgtlb 40042 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
287277, 285, 282, 286syl3anc 1366 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
2882873adantl3 1239 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
289284ltpnfd 11993 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 < +∞)
290275, 276, 284, 288, 289eliood 40038 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
291290adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
292197a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ ∈ ℝ*)
293285adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
294283adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
295294mnfltd 11996 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ < 𝑥)
296136ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
297 iocleub 40043 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
298277, 285, 282, 297syl3anc 1366 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
299298adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ≤ (𝐸𝑋))
300 neqne 2831 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 = (𝐸𝑋) → 𝑥 ≠ (𝐸𝑋))
301300necomd 2878 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = (𝐸𝑋) → (𝐸𝑋) ≠ 𝑥)
302301adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≠ 𝑥)
303294, 296, 299, 302leneltd 10229 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
304292, 293, 294, 295, 303eliood 40038 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
3053043adantll3 39517 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
306229ad2antrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
307275adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) ∈ ℝ*)
308213ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
309284adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
310288adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) < 𝑥)
311238ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
312212ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
3133033adantll3 39517 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
314218ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
315309, 311, 312, 313, 314ltletrd 10235 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝑄‘(𝑖 + 1)))
316307, 308, 309, 310, 315eliood 40038 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
317306, 316sseldd 3637 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥𝐷)
318305, 317elind 3831 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
319 elun1 3813 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
320318, 319syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
321291, 320elind 3831 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
322274, 321pm2.61dan 849 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
323215adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
324239adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝐸𝑋) ∈ ℝ*)
325 elinel1 3832 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
326 elioore 12243 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ)
327326rexrd 10127 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ*)
328325, 327syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ℝ*)
329328adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ℝ*)
330203adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
331262a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → +∞ ∈ ℝ*)
332325adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
333 ioogtlb 40035 . . . . . . . . . . . . . . . 16 (((𝑄𝑖) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)+∞)) → (𝑄𝑖) < 𝑥)
334330, 331, 332, 333syl3anc 1366 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
3353343adantl3 1239 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
336 elinel2 3833 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
337 elsni 4227 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {(𝐸𝑋)} → 𝑥 = (𝐸𝑋))
338337adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 = (𝐸𝑋))
339137adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → (𝐸𝑋) ≤ (𝐸𝑋))
340338, 339eqbrtrd 4707 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
341340adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
342 simpll 805 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝜑)
343 elunnel2 39512 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
344343adantll 750 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
345 elinel1 3832 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
346 elioore 12243 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-∞(,)(𝐸𝑋)) → 𝑥 ∈ ℝ)
347346adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ ℝ)
348136adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
349197a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → -∞ ∈ ℝ*)
350348rexrd 10127 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
351 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
352 iooltub 40053 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
353349, 350, 351, 352syl3anc 1366 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
354347, 348, 353ltled 10223 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
355345, 354sylan2 490 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) → 𝑥 ≤ (𝐸𝑋))
356342, 344, 355syl2anc 694 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
357341, 356pm2.61dan 849 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
358357adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
359336, 358sylan2 490 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
3603593adantl3 1239 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
361323, 324, 329, 335, 360eliocd 40048 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
362322, 361impbida 895 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)) ↔ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))))
363362eqrdv 2649 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
364 ioossre 12273 . . . . . . . . . . . . . 14 (-∞(,)(𝐸𝑋)) ⊆ ℝ
365 ssinss1 3874 . . . . . . . . . . . . . 14 ((-∞(,)(𝐸𝑋)) ⊆ ℝ → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
366364, 365mp1i 13 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
367238snssd 4372 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {(𝐸𝑋)} ⊆ ℝ)
368366, 367unssd 3822 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ)
369 eqid 2651 . . . . . . . . . . . . 13 (topGen‘ran (,)) = (topGen‘ran (,))
370236, 369tgiooss 40051 . . . . . . . . . . . 12 ((((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
371368, 370syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
372260, 363, 3713eltr4d 2745 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
373 isopn3i 20934 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top ∧ ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
374253, 372, 373sylancr 696 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
375246, 374eqtr2d 2686 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
376243, 375eleqtrd 2732 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
377196, 231, 235, 236, 237, 376limcres 23695 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
378231resabs1d 5463 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
379378oveq1d 6705 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
380189, 377, 3793eqtr2d 2691 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
381184feq2d 6069 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
382192, 381mpbird 247 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
383382adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
3843833ad2antl1 1243 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
385 ioosscn 40034 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ
386385a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ)
387184eqcomd 2657 . . . . . . . . . . . 12 (𝜑𝐷 = dom 𝐹)
3883873ad2ant1 1102 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 = dom 𝐹)
389230, 388sseqtrd 3674 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
390389adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
3917a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
392 oveq2 6698 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
393392oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
394393fveq2d 6233 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
395394oveq1d 6705 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
396395adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
3972, 14resubcld 10496 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵𝑋) ∈ ℝ)
3982, 1resubcld 10496 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
3994, 398syl5eqel 2734 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
4001, 2posdifd 10652 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4013, 400mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 < (𝐵𝐴))
4024eqcomi 2660 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴) = 𝑇
403402a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵𝐴) = 𝑇)
404401, 403breqtrd 4711 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < 𝑇)
405404gt0ne0d 10630 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ≠ 0)
406397, 399, 405redivcld 10891 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
407406flcld 12639 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
408407zred 11520 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
409408, 399remulcld 10108 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
410391, 396, 14, 409fvmptd 6327 . . . . . . . . . . . . . 14 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
411410, 409eqeltrd 2730 . . . . . . . . . . . . 13 (𝜑 → (𝑍𝑋) ∈ ℝ)
412411recnd 10106 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) ∈ ℂ)
413412adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
4144133ad2antl1 1243 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
415414negcld 10417 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → -(𝑍𝑋) ∈ ℂ)
416 eqid 2651 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}
417 ioosscn 40034 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ
418417sseli 3632 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℂ)
419418adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℂ)
420412adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℂ)
421419, 420pncand 10431 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑦)
422421eqcomd 2657 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
4234223ad2antl1 1243 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
424410oveq2d 6706 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
425424adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
426419, 420addcld 10097 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℂ)
427409recnd 10106 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
428427adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
429426, 428negsubd 10436 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
430407zcnd 11521 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
431399recnd 10106 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ ℂ)
432430, 431mulneg1d 10521 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
433432eqcomd 2657 . . . . . . . . . . . . . . . . . . 19 (𝜑 → -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
434433oveq2d 6706 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
435434adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
436425, 429, 4353eqtr2d 2691 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
4374363ad2antl1 1243 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
438407znegcld 11522 . . . . . . . . . . . . . . . . . 18 (𝜑 → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
439438adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
4404393ad2antl1 1243 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
441 simpl1 1084 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
442230adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
443203adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ*)
444136rexrd 10127 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸𝑋) ∈ ℝ*)
445444ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐸𝑋) ∈ ℝ*)
446 elioore 12243 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℝ)
447446adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
448411adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
449447, 448readdcld 10107 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
450449adantlr 751 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
451411adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℝ)
452202, 451resubcld 10496 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ)
453452rexrd 10127 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
454453adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
45514rexrd 10127 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ∈ ℝ*)
456455ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ*)
457 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
458 ioogtlb 40035 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
459454, 456, 457, 458syl3anc 1366 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
460202adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ)
461451adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
462446adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
463460, 461, 462ltsubaddd 10661 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑦 ↔ (𝑄𝑖) < (𝑦 + (𝑍𝑋))))
464459, 463mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) < (𝑦 + (𝑍𝑋)))
46514ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ)
466 iooltub 40053 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
467454, 456, 457, 466syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
468462, 465, 461, 467ltadd1dd 10676 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝑋 + (𝑍𝑋)))
4695a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
470 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋𝑥 = 𝑋)
471 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
472470, 471oveq12d 6708 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
473472adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
47414, 411readdcld 10107 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
475469, 473, 14, 474fvmptd 6327 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
476475eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
477476ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
478468, 477breqtrd 4711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝐸𝑋))
479443, 445, 450, 464, 478eliood 40038 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
4804793adantl3 1239 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
481442, 480sseldd 3637 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ 𝐷)
482441, 481, 4403jca 1261 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
483 eleq1 2718 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
4844833anbi3d 1445 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
485 oveq1 6697 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
486485oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
487486eleq1d 2715 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
488484, 487imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)))
489 ovex 6718 . . . . . . . . . . . . . . . . . 18 (𝑦 + (𝑍𝑋)) ∈ V
490 eleq1 2718 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥𝐷 ↔ (𝑦 + (𝑍𝑋)) ∈ 𝐷))
4914903anbi2d 1444 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ)))
492 oveq1 6697 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)))
493492eleq1d 2715 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷))
494491, 493imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦 + (𝑍𝑋)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)))
495 fourierdlem49.dper . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
496489, 494, 495vtocl 3290 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)
497488, 496vtoclg 3297 . . . . . . . . . . . . . . . 16 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
498440, 482, 497sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)
499437, 498eqeltrd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) ∈ 𝐷)
500423, 499eqeltrd 2730 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦𝐷)
501500ralrimiva 2995 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
502 dfss3 3625 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷 ↔ ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
503501, 502sylibr 224 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷)
504202recnd 10106 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
505412adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℂ)
506504, 505negsubd 10436 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + -(𝑍𝑋)) = ((𝑄𝑖) − (𝑍𝑋)))
507506eqcomd 2657 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) = ((𝑄𝑖) + -(𝑍𝑋)))
508475oveq1d 6705 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑋) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)))
509474recnd 10106 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℂ)
510509, 412negsubd 10436 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)))
51114recnd 10106 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℂ)
512511, 412pncand 10431 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑋)
513508, 510, 5123eqtrrd 2690 . . . . . . . . . . . . . . 15 (𝜑𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
514513adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
515507, 514oveq12d 6708 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) = (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))))
516451renegcld 10495 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → -(𝑍𝑋) ∈ ℝ)
517202, 278, 516iooshift 40066 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))})
518515, 517eqtr2d 2686 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5195183adant3 1101 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5201843ad2ant1 1102 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → dom 𝐹 = 𝐷)
521503, 519, 5203sstr4d 3681 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
522521adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
523410negeqd 10313 . . . . . . . . . . . . . . . 16 (𝜑 → -(𝑍𝑋) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
524523, 433eqtrd 2685 . . . . . . . . . . . . . . 15 (𝜑 → -(𝑍𝑋) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
525524oveq2d 6706 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + -(𝑍𝑋)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
526525fveq2d 6233 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
527526adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5285273ad2antl1 1243 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
529438adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5305293ad2antl1 1243 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
531 simpl1 1084 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝜑)
532230sselda 3636 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝑥𝐷)
533531, 532, 5303jca 1261 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5344833anbi3d 1445 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
535485oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
536535fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
537536eqeq1d 2653 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
538534, 537imbi12d 333 . . . . . . . . . . . . 13 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
539 fourierdlem49.per . . . . . . . . . . . . 13 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
540538, 539vtoclg 3297 . . . . . . . . . . . 12 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
541530, 533, 540sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
542528, 541eqtrd 2685 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
543542adantlr 751 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
544 simpr 476 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
545384, 386, 390, 415, 416, 522, 543, 544limcperiod 40178 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))))
546518reseq2d 5428 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
547514eqcomd 2657 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) + -(𝑍𝑋)) = 𝑋)
548546, 547oveq12d 6708 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
5495483adant3 1101 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
550549adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
551545, 550eleqtrd 2732 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
552382adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
5535523ad2antl1 1243 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
554417a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ)
555503, 520sseqtr4d 3675 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
556555adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
557412adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
5585573ad2antl1 1243 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
559 eqid 2651 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}
560504, 505npcand 10434 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)) = (𝑄𝑖))
561560eqcomd 2657 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)))
562475adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
563561, 562oveq12d 6708 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) = ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))))
56414adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
565452, 564, 451iooshift 40066 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))})
566563, 565eqtr2d 2686 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
5675663adant3 1101 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
568230, 567, 5203sstr4d 3681 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
569568adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
570410oveq2d 6706 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + (𝑍𝑋)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
571570fveq2d 6233 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
572571adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5735723ad2antl1 1243 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
574407adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5755743ad2antl1 1243 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
576 simpl1 1084 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
577503sselda 3636 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥𝐷)
578576, 577, 5753jca 1261 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
579 eleq1 2718 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5805793anbi3d 1445 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
581 oveq1 6697 . . . . . . . . . . . . . . . . 17 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
582581oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
583582fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
584583eqeq1d 2653 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
585580, 584imbi12d 333 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
586585, 539vtoclg 3297 . . . . . . . . . . . 12 ((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
587575, 578, 586sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
588573, 587eqtrd 2685 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
589588adantlr 751 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
590 simpr 476 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
591553, 554, 556, 558, 559, 569, 589, 590limcperiod 40178 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))))
592566reseq2d 5428 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
593476adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
594592, 593oveq12d 6708 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
5955943adant3 1101 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
596595adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
597591, 596eleqtrd 2732 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
598551, 597impbida 895 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ↔ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)))
599598eqrdv 2649 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
600 resindm 5479 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)𝑋)))
601600eqcomd 2657 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
602179, 601syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
603184ineq2d 3847 . . . . . . . . . 10 (𝜑 → ((-∞(,)𝑋) ∩ dom 𝐹) = ((-∞(,)𝑋) ∩ 𝐷))
604603reseq2d 5428 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
605602, 604eqtrd 2685 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
606605oveq1d 6705 . . . . . . 7 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
6076063ad2ant1 1102 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
608 inss2 3867 . . . . . . . . . 10 ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷
609608a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷)
610193, 609fssresd 6109 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)):((-∞(,)𝑋) ∩ 𝐷)⟶ℂ)
611452mnfltd 11996 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < ((𝑄𝑖) − (𝑍𝑋)))
612198, 453, 611xrltled 39800 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ ((𝑄𝑖) − (𝑍𝑋)))
613 iooss1 12248 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ -∞ ≤ ((𝑄𝑖) − (𝑍𝑋))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
614197, 612, 613sylancr 696 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
6156143adant3 1101 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
616615, 503ssind 3870 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ 𝐷))
617608, 234syl5ss 3647 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℂ)
618 eqid 2651 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
6194533adant3 1101 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
6204553ad2ant1 1102 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ*)
6214753ad2ant1 1102 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
622241, 621breqtrd 4711 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑋 + (𝑍𝑋)))
6234113ad2ant1 1102 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑍𝑋) ∈ ℝ)
624143ad2ant1 1102 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
625214, 623, 624ltsubaddd 10661 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑋 ↔ (𝑄𝑖) < (𝑋 + (𝑍𝑋))))
626622, 625mpbird 247 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑋)
62714leidd 10632 . . . . . . . . . . 11 (𝜑𝑋𝑋)
6286273ad2ant1 1102 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋𝑋)
629619, 620, 620, 626, 628eliocd 40048 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
630 snunioo2 40049 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ* ∧ ((𝑄𝑖) − (𝑍𝑋)) < 𝑋) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
631619, 620, 626, 630syl3anc 1366 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
632631fveq2d 6233 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)))
633 ovex 6718 . . . . . . . . . . . . . 14 (-∞(,)𝑋) ∈ V
634633inex1 4832 . . . . . . . . . . . . 13 ((-∞(,)𝑋) ∩ 𝐷) ∈ V
635 snex 4938 . . . . . . . . . . . . 13 {𝑋} ∈ V
636634, 635unex 6998 . . . . . . . . . . . 12 (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V
637 resttop 21012 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
638247, 636, 637mp2an 708 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top
639636a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V)
640 iooretop 22616 . . . . . . . . . . . . . 14 (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))
641640a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,)))
642 elrestr 16136 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
643255, 639, 641, 642syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
644453adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
645262a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → +∞ ∈ ℝ*)
64614ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ)
647 iocssre 12291 . . . . . . . . . . . . . . . . . . 19 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
648644, 646, 647syl2anc 694 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
649 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
650648, 649sseldd 3637 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ℝ)
651455ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ*)
652 iocgtlb 40042 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
653644, 651, 649, 652syl3anc 1366 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
654650ltpnfd 11993 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 < +∞)
655644, 645, 650, 653, 654eliood 40038 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
6566553adantl3 1239 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
657 eqvisset 3242 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋𝑋 ∈ V)
658 snidg 4239 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ V → 𝑋 ∈ {𝑋})
659657, 658syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋𝑋 ∈ {𝑋})
660470, 659eqeltrd 2730 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋𝑥 ∈ {𝑋})
661 elun2 3814 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
662660, 661syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
663662adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
664 simpll 805 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → (𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
665644adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
666455ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
667650adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
668653adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
66914ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
670 iocleub 40043 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
671644, 651, 649, 670syl3anc 1366 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
672671adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
673470eqcoms 2659 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 = 𝑥𝑥 = 𝑋)
674673necon3bi 2849 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = 𝑋𝑋𝑥)
675674adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
676667, 669, 672, 675leneltd 10229 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < 𝑋)
677665, 666, 667, 668, 676eliood 40038 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
6786773adantll3 39517 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
679616sselda 3636 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
680 elun1 3813 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
681679, 680syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
682664, 678, 681syl2anc 694 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
683663, 682pm2.61dan 849 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
684656, 683elind 3831 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
685619adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
686620adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
687 elinel1 3832 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
688 elioore 12243 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) → 𝑥 ∈ ℝ)
689687, 688syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
690689rexrd 10127 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
691690adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
692453adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
693262a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → +∞ ∈ ℝ*)
694687adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
695 ioogtlb 40035 . . . . . . . . . . . . . . . . 17 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
696692, 693, 694, 695syl3anc 1366 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
6976963adantl3 1239 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
698 elinel2 3833 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
699 elsni 4227 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑋} → 𝑥 = 𝑋)
700699adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑥 = 𝑋)
701627adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑋𝑋)
702700, 701eqbrtrd 4707 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {𝑋}) → 𝑥𝑋)
703702adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
704 simpll 805 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝜑)
705 elunnel2 39512 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
706705adantll 750 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
707 elinel1 3832 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (-∞(,)𝑋))
708706, 707syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ (-∞(,)𝑋))
709 elioore 12243 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-∞(,)𝑋) → 𝑥 ∈ ℝ)
710709adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ ℝ)
71114adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ)
712197a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → -∞ ∈ ℝ*)
713455adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ*)
714 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ (-∞(,)𝑋))
715 iooltub 40053 . . . . . . . . . . . . . . . . . . . . 21 ((-∞ ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
716712, 713, 714, 715syl3anc 1366 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
717710, 711, 716ltled 10223 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥𝑋)
718704, 708, 717syl2anc 694 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
719703, 718pm2.61dan 849 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥𝑋)
720698, 719sylan2 490 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
7217203ad2antl1 1243 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
722685, 686, 691, 697, 721eliocd 40048 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
723684, 722impbida 895 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ↔ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))))
724723eqrdv 2649 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
725608, 232syl5ss 3647 . . . . . . . . . . . . . . 15 (𝜑 → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℝ)
72614snssd 4372 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ ℝ)
727725, 726unssd 3822 . . . . . . . . . . . . . 14 (𝜑 → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
7287273ad2ant1 1102 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
729236, 369tgiooss 40051 . . . . . . . . . . . . 13 ((((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
730728, 729syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
731643, 724, 7303eltr4d 2745 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
732 isopn3i 20934 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
733638, 731, 732sylancr 696 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
734632, 733eqtr2d 2686 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
735629, 734eleqtrd 2732 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
736610, 616, 617, 236, 618, 735limcres 23695 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
737736eqcomd 2657 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋) = (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
738616resabs1d 5463 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
739738oveq1d 6705 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
740607, 737, 7393eqtrrd 2690 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
741380, 599, 7403eqtrrd 2690 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
742741rexlimdv3a 3062 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋))))
743176, 742mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
7441233adant3 1101 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7452213adant3 1101 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
746 fourierdlem49.l . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
7477463adant3 1101 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
748 eqid 2651 . . . . . . . 8 if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) = if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋)))
749 eqid 2651 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))
750214, 212, 744, 745, 747, 214, 238, 241, 220, 748, 749fourierdlem33 40675 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
751220resabs1d 5463 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
752751oveq1d 6705 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
753750, 752eleqtrd 2732 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
754 ne0i 3954 . . . . . 6 (if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
755753, 754syl 17 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
756380, 755eqnetrd 2890 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
757756rexlimdv3a 3062 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅))
758176, 757mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
759743, 758eqnetrd 2890 1 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cun 3605  cin 3606  wss 3607  c0 3948  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144  cres 5145  Rel wrel 5148   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  supcsup 8387  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  cuz 11725  (,)cioo 12213  (,]cioc 12214  [,]cicc 12216  ...cfz 12364  ..^cfzo 12504  cfl 12631  t crest 16128  TopOpenctopn 16129  topGenctg 16145  fldccnfld 19794  Topctop 20746  intcnt 20869  cnccncf 22726   lim climc 23671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-ntr 20872  df-cn 21079  df-cnp 21080  df-xms 22172  df-ms 22173  df-cncf 22728  df-limc 23675
This theorem is referenced by:  fourierdlem94  40735  fourierdlem113  40754
  Copyright terms: Public domain W3C validator