Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem47 Structured version   Visualization version   GIF version

Theorem fourierdlem47 40892
Description: For 𝑟 large enough, the final expression is less than the given positive 𝐸. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem47.ibl (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
fourierdlem47.iblmul ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierdlem47.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem47.g (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
fourierdlem47.absg (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
fourierdlem47.a (𝜑𝐴 ∈ ℂ)
fourierdlem47.x 𝑋 = (abs‘𝐴)
fourierdlem47.c (𝜑𝐶 ∈ ℂ)
fourierdlem47.y 𝑌 = (abs‘𝐶)
fourierdlem47.z 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
fourierdlem47.e (𝜑𝐸 ∈ ℝ+)
fourierdlem47.b ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
fourierdlem47.absb ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
fourierdlem47.d ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
fourierdlem47.absd ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
fourierdlem47.m 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
Assertion
Ref Expression
fourierdlem47 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝐶,𝑚   𝐷,𝑚   𝑚,𝐸   𝑚,𝐹   𝑚,𝐺   𝑚,𝐼,𝑥   𝑚,𝑀,𝑟,𝑥   𝜑,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑥,𝑟)   𝐵(𝑥,𝑟)   𝐶(𝑥,𝑟)   𝐷(𝑥,𝑟)   𝐸(𝑥,𝑟)   𝐹(𝑥,𝑟)   𝐺(𝑥,𝑟)   𝐼(𝑟)   𝑋(𝑥,𝑚,𝑟)   𝑌(𝑥,𝑚,𝑟)   𝑍(𝑥,𝑚,𝑟)

Proof of Theorem fourierdlem47
StepHypRef Expression
1 fourierdlem47.m . . 3 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
2 fourierdlem47.x . . . . . . . . . . 11 𝑋 = (abs‘𝐴)
3 fourierdlem47.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
43abscld 14395 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℝ)
52, 4syl5eqel 2844 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
6 fourierdlem47.y . . . . . . . . . . 11 𝑌 = (abs‘𝐶)
7 fourierdlem47.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
87abscld 14395 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
96, 8syl5eqel 2844 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
105, 9readdcld 10282 . . . . . . . . 9 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
11 fourierdlem47.z . . . . . . . . . 10 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
12 fourierdlem47.f . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
1312abscld 14395 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
14 fourierdlem47.ibl . . . . . . . . . . . 12 (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
1512, 14iblabs 23815 . . . . . . . . . . 11 (𝜑 → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
1613, 15itgrecl 23784 . . . . . . . . . 10 (𝜑 → ∫𝐼(abs‘𝐹) d𝑥 ∈ ℝ)
1711, 16syl5eqel 2844 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
1810, 17readdcld 10282 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
19 fourierdlem47.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 12086 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2119rpne0d 12091 . . . . . . . 8 (𝜑𝐸 ≠ 0)
2218, 20, 21redivcld 11066 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
23 1red 10268 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
2422, 23readdcld 10282 . . . . . 6 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
2524flcld 12814 . . . . 5 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ)
26 0red 10254 . . . . . 6 (𝜑 → 0 ∈ ℝ)
27 reflcl 12812 . . . . . . 7 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
2824, 27syl 17 . . . . . 6 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
29 0lt1 10763 . . . . . . 7 0 < 1
3029a1i 11 . . . . . 6 (𝜑 → 0 < 1)
313absge0d 14403 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐴))
3231, 2syl6breqr 4847 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑋)
337absge0d 14403 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐶))
3433, 6syl6breqr 4847 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑌)
355, 9, 32, 34addge0d 10816 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3612absge0d 14403 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 0 ≤ (abs‘𝐹))
3715, 13, 36itgge0 23797 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ∫𝐼(abs‘𝐹) d𝑥)
3837, 11syl6breqr 4847 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑍)
3910, 17, 35, 38addge0d 10816 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4018, 19, 39divge0d 12126 . . . . . . . . 9 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
41 flge0nn0 12836 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸)) → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
4222, 40, 41syl2anc 696 . . . . . . . 8 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
43 nn0addge1 11552 . . . . . . . 8 ((1 ∈ ℝ ∧ (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0) → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
4423, 42, 43syl2anc 696 . . . . . . 7 (𝜑 → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
45 1z 11620 . . . . . . . . 9 1 ∈ ℤ
46 fladdz 12841 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4722, 45, 46sylancl 697 . . . . . . . 8 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4842nn0cnd 11566 . . . . . . . . 9 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℂ)
4923recnd 10281 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
5048, 49addcomd 10451 . . . . . . . 8 (𝜑 → ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1) = (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
5147, 50eqtr2d 2796 . . . . . . 7 (𝜑 → (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))) = (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5244, 51breqtrd 4831 . . . . . 6 (𝜑 → 1 ≤ (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5326, 23, 28, 30, 52ltletrd 10410 . . . . 5 (𝜑 → 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
54 elnnz 11600 . . . . 5 ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ ↔ ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ ∧ 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))))
5525, 53, 54sylanbrc 701 . . . 4 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ)
5655peano2nnd 11250 . . 3 (𝜑 → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℕ)
571, 56syl5eqel 2844 . 2 (𝜑𝑀 ∈ ℕ)
58 elioore 12419 . . . . 5 (𝑟 ∈ (𝑀(,)+∞) → 𝑟 ∈ ℝ)
59 fourierdlem47.iblmul . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6058, 59sylan2 492 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6112adantlr 753 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐹 ∈ ℂ)
62 simpll 807 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝜑)
63 simpr 479 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑥𝐼)
6458ad2antlr 765 . . . . . 6 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℝ)
6564recnd 10281 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℂ)
66 fourierdlem47.g . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
6762, 63, 65, 66syl21anc 1476 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐺 ∈ ℂ)
683adantr 472 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐴 ∈ ℂ)
697adantr 472 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐶 ∈ ℂ)
70 eqid 2761 . . . 4 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
7119adantr 472 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ+)
7258adantl 473 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℝ)
732eqcomi 2770 . . . . . . . . . 10 (abs‘𝐴) = 𝑋
746eqcomi 2770 . . . . . . . . . 10 (abs‘𝐶) = 𝑌
7573, 74oveq12i 6827 . . . . . . . . 9 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
7675oveq1i 6825 . . . . . . . 8 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
774adantr 472 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐴) ∈ ℝ)
788adantr 472 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐶) ∈ ℝ)
7977, 78readdcld 10282 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8067negcld 10592 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → -𝐺 ∈ ℂ)
8161, 80mulcld 10273 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
8281, 60itgcl 23770 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
8382abscld 14395 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
8479, 83readdcld 10282 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8576, 84syl5eqelr 2845 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8620adantr 472 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ)
8721adantr 472 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ≠ 0)
8885, 86, 87redivcld 11066 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ∈ ℝ)
89 1red 10268 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 1 ∈ ℝ)
9088, 89readdcld 10282 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ∈ ℝ)
912, 77syl5eqel 2844 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑋 ∈ ℝ)
926, 78syl5eqel 2844 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑌 ∈ ℝ)
9391, 92readdcld 10282 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑋 + 𝑌) ∈ ℝ)
9417adantr 472 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑍 ∈ ℝ)
9593, 94readdcld 10282 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
9695, 86, 87redivcld 11066 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
9796, 89readdcld 10282 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
9897, 27syl 17 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
9998, 89readdcld 10282 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℝ)
1001, 99syl5eqel 2844 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ)
10181abscld 14395 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ∈ ℝ)
10281, 60iblabs 23815 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘(𝐹 · -𝐺))) ∈ 𝐿1)
103101, 102itgrecl 23784 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ∈ ℝ)
10481, 60itgabs 23821 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥)
10515adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
10661abscld 14395 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
10761, 80absmuld 14413 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) = ((abs‘𝐹) · (abs‘-𝐺)))
10880abscld 14395 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ∈ ℝ)
109 1red 10268 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 1 ∈ ℝ)
11061absge0d 14403 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 0 ≤ (abs‘𝐹))
111 recn 10239 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ → 𝑟 ∈ ℂ)
112111, 66sylan2 492 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → 𝐺 ∈ ℂ)
113112absnegd 14408 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) = (abs‘𝐺))
114 fourierdlem47.absg . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
115113, 114eqbrtrd 4827 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) ≤ 1)
11662, 63, 64, 115syl21anc 1476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ≤ 1)
117108, 109, 106, 110, 116lemul2ad 11177 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ ((abs‘𝐹) · 1))
118106recnd 10281 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℂ)
119118mulid1d 10270 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · 1) = (abs‘𝐹))
120117, 119breqtrd 4831 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ (abs‘𝐹))
121107, 120eqbrtrd 4827 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ≤ (abs‘𝐹))
122102, 105, 101, 106, 121itgle 23796 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ≤ ∫𝐼(abs‘𝐹) d𝑥)
123122, 11syl6breqr 4847 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥𝑍)
12483, 103, 94, 104, 123letrd 10407 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ 𝑍)
12583, 94, 93, 124leadd2dd 10855 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((𝑋 + 𝑌) + 𝑍))
12685, 95, 71, 125lediv1dd 12144 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
127 flltp1 12816 . . . . . . . . . . 11 ((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12896, 127syl 17 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12996, 45, 46sylancl 697 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
130128, 129breqtrrd 4833 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13188, 96, 98, 126, 130lelttrd 10408 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13288, 98, 89, 131ltadd1dd 10851 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1))
133132, 1syl6breqr 4847 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑀)
134100rexrd 10302 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ*)
135 pnfxr 10305 . . . . . . . 8 +∞ ∈ ℝ*
136135a1i 11 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → +∞ ∈ ℝ*)
137 simpr 479 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ (𝑀(,)+∞))
138 ioogtlb 40239 . . . . . . 7 ((𝑀 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
139134, 136, 137, 138syl3anc 1477 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
14090, 100, 72, 133, 139lttrd 10411 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑟)
14190, 72, 140ltled 10398 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ≤ 𝑟)
14272recnd 10281 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℂ)
143 fourierdlem47.b . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
144142, 143syldan 488 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐵 ∈ ℂ)
145 fourierdlem47.absb . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
14658, 145sylan2 492 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐵) ≤ 1)
147 fourierdlem47.d . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
148142, 147syldan 488 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐷 ∈ ℂ)
149 fourierdlem47.absd . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
15058, 149sylan2 492 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐷) ≤ 1)
15160, 61, 67, 68, 2, 69, 6, 70, 71, 72, 141, 144, 146, 148, 150fourierdlem30 40876 . . 3 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
152151ralrimiva 3105 . 2 (𝜑 → ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
153 oveq1 6822 . . . 4 (𝑚 = 𝑀 → (𝑚(,)+∞) = (𝑀(,)+∞))
154153raleqdv 3284 . . 3 (𝑚 = 𝑀 → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸 ↔ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸))
155154rspcev 3450 . 2 ((𝑀 ∈ ℕ ∧ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
15657, 152, 155syl2anc 696 1 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wne 2933  wral 3051  wrex 3052   class class class wbr 4805  cmpt 4882  cfv 6050  (class class class)co 6815  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  +∞cpnf 10284  *cxr 10286   < clt 10287  cle 10288  cmin 10479  -cneg 10480   / cdiv 10897  cn 11233  0cn0 11505  cz 11590  +crp 12046  (,)cioo 12389  cfl 12806  abscabs 14194  𝐿1cibl 23606  citg 23607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cc 9470  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-disj 4774  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-ofr 7065  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-omul 7736  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-acn 8979  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-rlim 14440  df-sum 14637  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cn 21254  df-cnp 21255  df-cmp 21413  df-tx 21588  df-hmeo 21781  df-xms 22347  df-ms 22348  df-tms 22349  df-cncf 22903  df-ovol 23454  df-vol 23455  df-mbf 23608  df-itg1 23609  df-itg2 23610  df-ibl 23611  df-itg 23612  df-0p 23657
This theorem is referenced by:  fourierdlem73  40918
  Copyright terms: Public domain W3C validator